Origin of brittle cleavage in iridium.

Science

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104-6202, USA.

Published: August 2005

Iridium is unique among the face-centered cubic metals in that it undergoes brittle cleavage after a period of plastic deformation under tensile stress. Atomistic simulation using a quantum-mechanically derived bond-order potential shows that in iridium, two core structures for the screw dislocation are possible: a glissile planar core and a metastable nonplanar core. Transformation between the two core structures is athermal and leads to exceptionally high rates of cross slip during plastic deformation. Associated with this athermal cross slip is an exponential increase in the dislocation density and strong work hardening from which brittle cleavage is a natural consequence.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1114704DOI Listing

Publication Analysis

Top Keywords

brittle cleavage
12
plastic deformation
8
core structures
8
cross slip
8
origin brittle
4
cleavage iridium
4
iridium iridium
4
iridium unique
4
unique face-centered
4
face-centered cubic
4

Similar Publications

The shift fork shaft is a key component in transmissions, connecting the shift fork in order to adjust the gear engagement. This study investigates the effects of different welding sequences on deformation and residual stress during plasma welding of the shift fork shaft. A temperature-displacement coupled finite element method, using ABAQUS simulation software and a double ellipsoid heat source model, was employed for the numerical analysis.

View Article and Find Full Text PDF

Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood.

View Article and Find Full Text PDF

The high-temperature mechanical properties and fracture mechanism of selective laser melting (SLM) manufactured nickel-based alloy are highly important for its application. In this article, small punch test (SPT) method is used to study the mechanical properties of SLM-manufactured GH4169 over a wide temperature range from 25°C to 600°C. With the increase of temperature, the decreasing ratio of maximum load is only 18.

View Article and Find Full Text PDF

In brittle rocks, deformation is characterized by the initiation and propagation of cracks at both microscale and mesoscale levels. This study explores how rock texture influences the evolution of cracking networks and progressive rock damage results under uniaxial compression. 3D discrete analyses were employed to identify the critical stresses of three different rock types.

View Article and Find Full Text PDF

In this paper, the trans-grain extension behavior of crack tips is investigated. The crack propagation mechanism of BCC-Fe model of single and combination orientation under type I loading was studied by molecular dynamics method. It is found that crystal orientation has an important effect on the activation and evolution of crack growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!