Drug addiction results from a subversion of neural circuits that control motivation. Although the hedonic and addictive properties of psychostimulants and drugs of abuse are predominantly attributed to dopamine and glutamate, it is appreciated that other signaling molecules in the brain are important. This study suggests that cocaine- and amphetamine-regulated transcript (CART) peptides modulate the locomotor and motivational properties of psychostimulants. The behavioral effects of cocaine and amphetamine were examined in Carttm1Amgen knockout (Cart KO) and wild-type (WT) mice. Acute amphetamine administration increased in locomotor activity in WT mice, but this response was attenuated in Cart KO mice. Repeated amphetamine produced locomotor sensitization in WT mice but hardly any in Cart KO mice. Amphetamine elicited conditioned place preference in both genotypes, but amphetamine's potency was reduced in the Cart KO mice. Intravenous cocaine self-administration was observed in both genotypes, but Cart KO mice consumed less cocaine and responded less for cocaine than WT mice. The behavioral effects of psychostimulants were reduced in the mutant Cart KO mice. By contrast, open field activity and sucrose preference of drug-naive mice WT and Cart KO mice were not significantly different. The attenuated effects of amphetamine and cocaine in Cart KO mice suggest a positive neuromodulatory role for CART peptides in the locomotor and motivational properties of psychostimulants and implicate CART peptides in psychostimulant addiction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.105.091678 | DOI Listing |
Front Immunol
January 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
Background: The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!