Moloney murine leukemia virus (M-MuLV) integrase (IN) catalyses the insertion of the viral genome into the host chromosomal DNA. The limited solubility of the recombinant protein produced in Escherichia coli led the authors to explore the use of Saccharomyces cerevisiae for expression of M-MuLV IN. IN was expressed in yeast and purified by chromatography on nickel-NTA agarose. IN migrated as a single band in SDS-PAGE and did not contain IN degradation products. The enzyme was about twofold more active than the enzyme purified from E. coli and was free of nucleases. Using the yeast system, the substitution of the putative catalytic amino acid Asp184 by alanine was also analysed. The mutated enzyme was inactive in the in vitro assays. This is the first direct demonstration that mutation of Asp184 inactivates M-MuLV IN. Finally, S. cerevisiae was used as a model to assess the ability of M-MuLV IN to interact with eukaryotic protein partners. The expression of an active M-MuLV IN in yeast strains deficient in RAD52 induced a lethal effect. This phenotype could be attributed to cellular damage, as suggested by the viability of cells expressing inactive D184A IN. Furthermore, when active IN was expressed in a yeast strain lacking the ySNF5 transcription factor, the lethal effect was abolished, suggesting the involvement of ySNF5 in the cellular damage induced by IN. These results indicate that S. cerevisiae could be a useful model to study the interaction of IN with cellular components in order to identify potential counterparts of the natural host.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.81006-0DOI Listing

Publication Analysis

Top Keywords

yeast system
8
model study
8
moloney murine
8
murine leukemia
8
leukemia virus
8
expressed yeast
8
cerevisiae model
8
cellular damage
8
yeast
5
m-mulv
5

Similar Publications

Sourdough bread consumption has been associated with improved glucose and appetite regulation thanks to the presence of organic acids produced during fermentation of the flour-water mixture. We investigated the effects of whole meal sourdough bread (WSB) rich in lactic acid on energy intake, satiety, gastric emptying, glucose, and C-peptide response compared to whole meal yeast bread (WYB). Forty-four normal-weight participants (age: 30 ± 10 y; BMI: 23 ± 2 kg/m) participated in this double-blind, randomized cross-over trial, consisting of two study visits separated by one week.

View Article and Find Full Text PDF

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG).

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Recently, the biosynthesis of omega-3 fatty acids (ω3 FAs) in yeast has witnessed significant advancements. Notably, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play crucial roles in overall human growth, encompassing neurological development, cardiovascular health, and immune function. However, traditional sources of ω3 FAs face limitations such as environmental concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!