T cells directed against hematopoietic-restricted minor histocompatibility antigens (mHags) may mediate graft-versus-leukemia (GVL) reactivity without graft-versus-host disease (GVHD). Recently, the HLA-A24-restricted mHag ACC-1 and the HLA-B44-restricted mHag ACC-2 encoded by separate polymorphisms within the BCL2A1 gene were characterized. Hematopoietic-restricted expression was suggested for these mHags. We demonstrate BCL2-related protein A1 (BCL2A1) mRNA expression in mesenchymal stromal cells (MSCs) that was up-regulated by the inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and/or interferon gamma (IFN-gamma). Analysis of cytotoxicity and IFN-gamma production illustrated that ACC-2-specific T cells did not recognize untreated MSCs or IFN-gamma-treated MSCs but showed specific recognition and killing of MSCs treated with TNF-alpha plus IFN-gamma. We hypothesize that under steady-state circumstances BCL2A1-specific T cells may exhibit relative specificity for hematopoietic tissue, but reactivity against nonhematopoietic cells may occur when inflammatory infiltrates are present. Thus, the role of BCL2A1-specific T cells in differential induction of GVL reactivity and GVHD may depend on the presence of inflammatory responses that may occur during GVHD.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2004-09-3749DOI Listing

Publication Analysis

Top Keywords

minor histocompatibility
8
histocompatibility antigens
8
inflammatory cytokines
8
gvl reactivity
8
bcl2a1-specific cells
8
cells
6
up-regulated expression
4
expression nonhematopoietic
4
nonhematopoietic tissues
4
tissues bcl2a1-derived
4

Similar Publications

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Association of MTHFD1 G1958A (rs2236225) gene polymorphism with the risk of congenital heart disease: a systematic review and meta-analysis.

BMC Med Genomics

January 2025

Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou City, Gansu Province, 730000, China.

Background: We did this study to better clarify the correlations of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1)-G1958A (rs2236225) gene polymorphism with the risk of congenital heart diseases (CHD) and its subgroups.

Methods: Relevant articles were searched in PubMed, Web of Science, Cochrane Library, Embase, CNKI, VIP database and Wanfang DATA until October 2023. We will use odds ratios (ORs) and 95% confidence intervals (CIs) to examine the potential associations of MTHFD1- G1958A gene polymorphism with CHD and its subgroups.

View Article and Find Full Text PDF

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

SLC1A5 is a key regulator of glutamine metabolism and a prognostic marker for aggressive luminal breast cancer.

Sci Rep

January 2025

Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England.

Cancer cells exhibit altered metabolism, often relying on glutamine (Gln) for growth. Breast cancer (BC) is a heterogeneous disease with varying clinical outcomes. We investigated the role of the amino acid transporter SLC1A5 (ASCT2) and its association with BC subtypes and patient outcomes.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!