Exogenous GH can affect central nervous system function when given peripherally to animals and as a supplemental therapy to humans. This study tested whether GH crosses the blood-brain barrier (BBB) by a specific transport system and found that both mice and rats have small but significant uptake of GH into the brain without a species difference. Determined by multiple-time regression analysis, the blood-to-brain influx transfer constants of 125I-labeled rat GH in mice (0.23+/-0.07 microl/g.min) and rats (0.32+/-0.04 microl/g.min) were comparable to those of some cytokines of similar size, with a half-time disappearance of 125I-GH of 3.8-7.6 min in blood. Intact 125I-GH was present in both serum and brain homogenate 20 min after iv injection. At this time, about 26.8% of GH in brain entered the parenchyma, whereas 10% was entrapped in endothelial cells. Neither excess GH nor insulin showed acute modulation of the influx, indicating lack of a saturable transport system for GH at the BBB. Binding and cellular uptake studies in cultured cerebral microvessel endothelial cells (RBE4) further ruled out the presence of high-capacity adsorptive endocytosis. The brain influx of GH by simple diffusion adds definitive value to the long-disputed question of whether and how GH crosses the BBB. The central nervous system effects of peripheral GH can be attributed to permeation of the BBB despite the absence of a specific transport system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2005-0587 | DOI Listing |
Vet Res Commun
January 2025
Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFPlants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Protection, Hunan Agricultural University, Changsha, China.
Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.
Introduction: Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!