Superoxide (O2-) increases Na+ reabsorption in the thick ascending limb (THAL) by enhancing Na/K/2Cl cotransport. However, the effects of O2- on other THAL transporters, such as Na(+)/H+ exchangers, are unknown. We hypothesized that O2- stimulates Na(+)/H+ exchange in the THAL. We assessed total Na(+)/H+ exchange activity by measuring recovery of intracellular pH (pH(i)) after acid loading in isolated perfused THALs before and after adding xanthine oxidase (XO) and hypoxanthine (HX). We found that XO and HX decreased total pH(i) recovery rate from 0.26 +/- 0.05 to 0.21 +/- 0.04 pH units/min (P < 0.05), and this net inhibition decreased steady-state pH(i) from 7.52 to 7.37. Because THALs have different Na(+)/H+ exchanger isoforms on the luminal and basolateral membrane, we tested the effects of xanthine oxidase and hypoxanthine on luminal and basolateral Na(+)/H+ exchange by adding dimethylamiloride to either the bath or lumen. Xanthine oxidase and hypoxanthine increased luminal Na(+)/H+ exchange from 3.5 +/- 0.8 to 6.7 +/- 1.4 pmol.min(-1).mm(-1) (P < 0.01) but decreased basolateral Na(+)/H+ exchange from 10.8 +/- 1.8 to 6.8 +/- 1.1 pmol.min(-1).mm(-1) (P < 0.007). To ascertain whether these effects were caused by O2- or H2O2, we examined the ability of tempol, a superoxide dismutase mimetic, to block these effects. In the presence of tempol, xanthine oxidase and hypoxanthine had no effect on luminal or basolateral Na(+)/H+ exchange. We conclude that O2- inhibits basolateral and stimulates luminal Na(+)/H+ exchangers, perhaps because different isoforms are expressed on each membrane. Inhibition of basolateral Na(+)/H+ exchange may enhance stimulation of luminal Na(+)/H+ exchange by providing additional protons to be extruded across the luminal membrane. Together, the effects of O2- on Na(+)/H+ exchange may increase net HCO3- reabsorption by the THAL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00447.2005 | DOI Listing |
Mil Med
September 2024
Navy Medicine Operational Training Command, University of Pennsylvania, Philadelphia, PA 19104, USA.
Background: Military-civilian partnerships (MCP) provide a bidirectional exchange of information and trauma best practices. In 2021, Penn Presbyterian Medical Center and the U.S.
View Article and Find Full Text PDFAdv Healthc Mater
July 2024
Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented.
View Article and Find Full Text PDFFEMS Microbiol Ecol
April 2023
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
Ectomycorrhizal (ECM) fungi are key players in forest carbon (C) sequestration, receiving a substantial proportion of photosynthetic C from their forest tree hosts in exchange for plant growth-limiting soil nutrients. However, it remains unknown whether the fungus or plant controls the quantum of C in this exchange, nor what mechanisms are involved. Here, we aimed to identify physiological and genetic properties of both partners that influence ECM C transfer.
View Article and Find Full Text PDFACS Nano
June 2022
Department of Physics, Sejong University, Seoul 05006, Korea.
The topological Hall effect has been observed in magnetic materials of complex spin structures or bilayers of trivial magnets and strong spin-orbit-coupled systems. In view of current attention on dissipationless topological electronics, the occurrence of the topological Hall effect in new systems or by an unexpected mechanism is fascinating. Here, we report a robust topological Hall effect generated in bilayers of a ferromagnet and a noncoplanar antiferromagnet, from the interfacial Dzyaloshinskii-Moriya interaction due to the exchange coupling of magnetic layers.
View Article and Find Full Text PDFNat Commun
March 2022
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL, 61801, USA.
Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligands N3 that allow for detailed mechanistic studies of the photocatalytic C-O coupling reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!