Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2005.08.007DOI Listing

Publication Analysis

Top Keywords

entamoeba learned
4
learned genome
4
entamoeba
1
genome
1

Similar Publications

Metabolic pathway modeling, essential for understanding organism metabolism, is pivotal in predicting genetic mutation effects, drug design, and biofuel development. Enhancing these modeling techniques is crucial for achieving greater prediction accuracy and reliability. However, the limited experimental data or the complexity of the pathway makes it challenging for researchers to predict phenotypes.

View Article and Find Full Text PDF

Ca-binding proteins are present in almost all living organisms and different types display different levels of binding affinities for the cation. Here, we report two new scoring schemes enabling the user to estimate and manipulate the calcium binding affinities in EF hand containing proteins. To validate this, we designed a unique EF-hand loop capable of binding calcium with high affinity by altering five residues.

View Article and Find Full Text PDF

The use of machine learning (ML) in life sciences has gained wide interest over the past years, as it speeds up the development of high performing models. Important modeling tools in biology have proven their worth for pathway design, such as mechanistic models and metabolic networks, as they allow better understanding of mechanisms involved in the functioning of organisms. However, little has been done on the use of ML to model metabolic pathways, and the degree of non-linearity associated with them is not clear.

View Article and Find Full Text PDF

Intestinal amoebiasis is a parasitic infection caused by Entamoeba histolytica. It is commonly found in developing countries with poor hygiene. A rare, life-threatening complication of amoebiasis is fulminant necrotizing amoebic colitis (FulNAC).

View Article and Find Full Text PDF

Entamoeba histolytica is the cause of amoebiasis. The trophozoite (amoeba) form of this parasite is capable of invading the intestine and can disseminate through the bloodstream to other organs. The mechanisms that allow amoebae to evade complement deposition during dissemination have not been well characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!