Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intermittent hypoxia has been found to prevent brain injury and to have a protective role in the CNS. To address the possible causes of this phenomenon, we made investigative effort to find out whether intermittent hypoxia affects neurogenesis in the adult rat brain by examining the newly divided cells in the subventricular zone (SVZ) and dentate gyrus (DG). The adult rats were treated with 3000 and 5000 m high altitude 4 h per day for 2 weeks consecutively. 5-Bromo-2-deoxyuridine-5-monophosphate (BrdU) immunocytochemistry demonstrated that the BrdU-labeled cells in the SVZ and DG increased after 3000 and 5000 m intermittent hypoxia. The number of BrdU-labeled cells in the SVZ returned to normal level 4 weeks following intermittent hypoxia. However, the BrdU-labeled cells in the DG had a twofold increase 4 weeks subsequent to intermittent hypoxia. From these data, we conclude that intermittent hypoxia facilitates the proliferation of neural stem cells in situ, and that the newly divided cells in the SVZ and DG react differently to hypoxia. We are convinced by these findings that the proliferation of neural stem cells in SVZ and DG may contribute to adaptive changes following intermittent hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2005.04.075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!