Background: Bartonella species are bacterial blood parasites of animals capable of causing disease in both animals and man. Cat-Scratch Disease (CSD) in humans is caused mainly by Bartonella henselae and is acquired from the cat, which serves as a reservoir for the bacteria. A second species, B. clarridgeiae is also implicated in the disease. Diagnosis of Bartonellosis by culture requires a week or more of incubation on enriched media containing blood, and recovery is often complicated by faster growing contaminating bacteria and fungi. PCR has been explored as an alternative to culture for both the detection and species identification of Bartonella, however sensitivity problems have been reported and false negative reactions due to blood inhibitors have not generally been addressed in test design.
Methods: A novel, nested-PCR was designed for the detection of Bartonella henselae and B. clarridgeiae based on the strategy of targeting species-specific size differences in the 16S-23S rDNA intergenic regions. An Internal Amplification Control was used for detecting PCR inhibition. The nested-PCR was utilized in a study on 103 blood samples from pet and stray cats in Trinidad.
Results: None of the samples were positive by primary PCR, but the Nested-PCR detected Bartonella in 32/103 (31%) cats where 16 were infected with only B. henselae, 13 with only B. clarridgeiae and 3 with both species. Of 22 stray cats housed at an animal shelter, 13 (59%) were positive for either or both species, supporting the reported increased incidence of Bartonella among feral cats.
Conclusion: The usefulness of a single PCR for the detection of Bartonella henselae and B. clarridgeiae in the blood of cats is questionable. A nested-PCR offers increased sensitivity over a primary PCR and should be evaluated with currently used methods for the routine detection and speciation of Bartonella henselae and B. clarridgeiae. In Trinidad, B. henselae and B. clarridgeiae are the predominant species in cats and infection appears highest with stray cats, however B. clarridgeiae may be present at levels similar to that of B. henselae in the pet population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1208886 | PMC |
http://dx.doi.org/10.1186/1471-2334-5-63 | DOI Listing |
Acta Trop
December 2024
One Health Research Group, Universidad de Las Américas, Quito, Ecuador. Electronic address:
Am J Vet Res
September 2024
Department of Clinical Sciences, Colorado State University, Fort Collins, CO.
Objective: To cohouse cats experimentally infected with Bartonella clarridgeiae (Bc) with naive cats in a flea-free environment or with Ctenocephalides felis, Bartonella henselae (Bh), Mycoplasma haemofelis, and Candidatus Mycoplasma haemominutum to determine which flea could be a vector and to assess whether transmission of the infectious agents could be blocked by fipronil and (S)-methoprene.
Animals: Specific pathogen-free cats (n = 34).
Methods: In experiment 1, Bc was inoculated in 1 cat that was housed with 9 naive cats without C felis.
Acta Trop
September 2024
One Health Research Group, Universidad de Las Américas, Quito, Ecuador. Electronic address:
Res Vet Sci
May 2024
Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania. Electronic address:
As ectoparasites and efficient vectors of pathogens fleas constitute a source of nuisance for animals as well as a major issue for public health in Algeria. In this study, a molecular survey has been conducted to investigate the presence of pathogens in fleas infesting domestic and wild carnivores in the central north and eastern north and south of Algeria. The molecular screening that targeted Acanthocheilonema reconditum, Bartonella spp.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
April 2024
Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville 41012, Spain. Electronic address:
Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!