Expression of the pea plastocyanin gene (PetE) is regulated by light and plastid signals. Previous work indicated that light and plastid regulation of pea PetE operates post-transcriptionally in transgenic tobacco, and requires the correct 5' terminus of the PetE transcript and the PetE-coding region. The post-transcriptional light and plastid regulation of pea PetE has now been demonstrated to operate in transgenic Arabidopsis, where in contrast the endogenous PETE gene is regulated transcriptionally. Transgenic tobacco seedlings containing constructs with progressive 3' deletions of the PetE-coding region fused to the luciferase (Luc) reporter gene demonstrate that the first 60 nucleotides of the coding region are sufficient for regulated accumulation of Luc transcripts by light and plastid signalling pathways affected by treatment with norflurazon and lincomycin. PetE constructs containing premature stop codons were generated to investigate whether translation has a role in light or plastid regulation. Insertion of a stop codon in place of the second codon of the PetE-coding region diminished both light and plastid regulation of PetE transcripts, whereas stop codons inserted later in the transcript had no effect on light or plastid regulation. These experiments indicate that the 5' end of the plastocyanin-coding region contains sequences important for regulation by light and plastid signals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2005.02474.xDOI Listing

Publication Analysis

Top Keywords

light plastid
36
plastid regulation
20
plastid signals
12
pete-coding region
12
light
9
expression pea
8
pea plastocyanin
8
plastocyanin gene
8
coding region
8
plastid
8

Similar Publications

Plastidial thioredoxin-like proteins are essential for normal embryogenesis and seed development in Arabidopsis thaliana.

J Plant Res

December 2024

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.

Thiol/disulfide-based redox regulation is a key mechanism for modulating protein functions in response to changes in cellular redox status. Two thioredoxin (Trx)-like proteins [atypical Cys His-rich Trx (ACHT) and Trx-like2 (TrxL2)] have been identified as crucial for oxidizing and deactivating several chloroplast enzymes during light-to-dark transitions; however, their roles remain to be fully understood. In this study, we investigated the functions of Trx-like proteins in seed development.

View Article and Find Full Text PDF

The small flowers of Myosotis scorpioides are pollinated by various groups of insects feeding on their nectar accumulating at the base of the corolla tube. To date, only few studies have focused on the anatomy and ultrastructure of nectaries in plants from the family Boraginaceae. The aim of this study was to analyse the structure of the M.

View Article and Find Full Text PDF

Background: Intracellular gene transfer (IGT) is a phenomenon in genome evolution that occurs between the nuclear and organellar genomes of plants or between the genomes of different organelles. The majority of the plastid genomes (plastomes) in angiosperms have a conserved structure, but some species exhibit unexpected structural variations.

Results: In this study, we focused on the Ferulinae, which includes Ferula, one of the largest genera in the Apiaceae family.

View Article and Find Full Text PDF

Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.

Proc Natl Acad Sci U S A

December 2024

Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

Article Synopsis
  • Haptophyta is a taxonomic group with unique plastids derived from red algae; this study focuses on the structure of their photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex using cryoelectron microscopy.
  • The PSI core is made up of 12 subunits that have adapted differently from those in red algae and cryptophytes, losing the PsaO subunit and gaining the PsaK subunit, along with 22 antenna proteins that arrange into a trilayered structure.
  • A previously unidentified pigment-binding subunit, L, was found in the PSI-iFCPI, which helps with energy transfer between the proteins, and computer simulations show that this complex efficiently transfers excitation
View Article and Find Full Text PDF

An orphan gene BOOSTER enhances photosynthetic efficiency and plant productivity.

Dev Cell

November 2024

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

Article Synopsis
  • The text discusses how transferring DNA from organelles to the nucleus is crucial for the evolution of eukaryotes, highlighted by a study that identified a specific gene (BSTR) linked to photosynthesis in Populus trichocarpa.
  • BSTR has three exons, with two derived from endophytic sources and one including a large part of a plastid gene related to Rubisco, which is essential for photosynthesis.
  • Overexpressing BSTR in poplar and Arabidopsis plants led to significant increases in plant height (up to 200%) and biomass (up to 200%), demonstrating its potential for enhancing growth under field conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!