Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0022-202X.2005.23781.xDOI Listing

Publication Analysis

Top Keywords

sca-1+ cells
4
cells adipocyte
4
adipocyte phenotype
4
phenotype neonatal
4
neonatal mouse
4
mouse skin
4
sca-1+
1
adipocyte
1
phenotype
1
neonatal
1

Similar Publications

Novel carbon dots with dual Modulatory effects on the bone marrow and spleen as a potential therapeutic candidate for treating spinal cord injury.

Bioact Mater

March 2025

Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China.

Spinal cord injury triggers leukocyte mobilization from the peripheral circulation to the injury site, exacerbating spinal cord damage. Simultaneously, bone marrow hematopoietic stem cells (HSCs) and splenic leukocytes rapidly mobilize to replenish the depleted peripheral blood leukocyte pool. However, current treatments for spinal cord injuries overlook interventions targeting peripheral immune organs and tissues, highlighting the need to develop novel drugs capable of effectively regulating peripheral immunity and treating spinal cord injuries.

View Article and Find Full Text PDF

The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches.

View Article and Find Full Text PDF

Localized COUP-TFII pDNA Delivery Modulates Stem/Progenitor Cell Differentiation to Enhance Endothelialization and Inhibit Calcification of Decellularized Allografts.

Adv Sci (Weinh)

December 2024

State key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China.

Decellularized allografts have emerged as promising candidates for vascular bypass grafting, owing to their inherent bioactivity and minimal immunogenicity. However, graft failure that results from suboptimal regeneration and pathological remodeling has hindered their clinical adoption. Recent advances in vascular biology highlight the pivotal role of COUP-TFII in orchestrating endothelial identity, angiogenesis, safeguarding against atherosclerosis, and mitigating vascular calcification.

View Article and Find Full Text PDF

Elevated hematopoietic stem cell frequency in mouse alveolar bone marrow.

Stem Cell Reports

December 2024

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan. Electronic address:

Hematopoietic stem cells (HSCs) are crucial for maintaining hematopoietic homeostasis and are localized within distinct bone marrow (BM) niches. While BM niches are often considered similar across different skeletal sites, we discovered that the alveolar BM (al-BM) in the mandible harbors the highest frequency of immunophenotypic HSCs in nine different skeletal sites. Transplantation assays revealed significantly increased engraftment from al-BM compared to femur, tibia, or pelvis BM, likely due to a higher proportion of alveolar HSCs.

View Article and Find Full Text PDF

Background: To investigate the long term effects of ionizing radiation (IR) on hematopoietic stem/progenitor cells (HSPCs), immune tissues and cells, and the effects of Siwu decoction (SWD) on immune senescence mice.

Methods: C57BL/6 J mice were exposed to 6.0 Gy Co γ irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!