The repercussion on the immune response of the expression of intraspecific aggressiveness in the face of a stressor agent was investigated in rats. Ninety-day-old animals were divided into three groups: the control group (only immunological measurements were performed), the foot-shock (FS) (animals individually receiving FS), and the intraspecific aggressive response (IAR) group (animals receiving FS and presenting IAR). For immunological measurements, blood samples were collected promptly at 7 and 15 days after FS or IAR. The FS reduced the total leukocyte amount presented. However, aggressiveness triggered not only reduction of the leukocytes, but also lymphocyte decrease and neutrophil increase. Moreover, an elevation in total leukocytes associated with an increase in the humoral immune response was also observed one week after IAR. In this study, the expression of intraspecific aggressiveness in the face of a stressor seemed to activate the immune system and to potentiate the antigen specific humoral response.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s1519-69842005000200003DOI Listing

Publication Analysis

Top Keywords

expression intraspecific
12
face stressor
12
immune response
12
intraspecific aggressive
8
stressor agent
8
intraspecific aggressiveness
8
aggressiveness face
8
immunological measurements
8
response
5
thie expression
4

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials.

View Article and Find Full Text PDF

The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.

View Article and Find Full Text PDF

The selection of plant genotypes characterized by wellness and stable growth under drought-stress conditions amid ongoing climate change is an important challenge in forest tree breeding. The introduction of molecular markers will enable efficient selection of breeding materials that are resistant to drought stress in forest trees as well as in crop species. Japanese cedar, Cryptomeria japonica, the most dominant forest species in Japan, grows well on mesic sites and is characterized by intraspecific variation in its drought-stress response.

View Article and Find Full Text PDF

The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!