Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Takagi-Sugeno fuzzy system is composed of several back-propagation neural networks (BP-NNs), and has some fuzzy logic properties. In this paper, the Takagi-Sugeno fuzzy logic system is applied to identifying official and unofficial rhubarb samples based on their infrared spectra. The effects of the number of hidden neurons and the momentum parameters on the prediction were investigated. The results obtained by using Takagi-Sugeno fuzzy system were better than those by commonly used BP-networks. With a proper network training parameter, 100% correctness can be obtained by using Takagi-Sugeno fuzzy system. This method is more accurate than the common methods, and is more scientific than traditional methods. So it is applied to identifying rhubarb easily and rapidly.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!