Lipooligosaccharide (LOS) is the major component of the external membrane of Campylobacter jejuni. LOS contains a hydrophobic moiety, lipid A, and a hydrophilic moiety, oligosaccharide. Due to the unique mimicry of human ganglioside structures and potential involvement in the induction of the autoimmune polyneuropathies, Guillain-Barré and Miller Fisher syndromes, the structural characterization of C. jejuni LOS has received much attention. We have been using capillary zone electrophoresis-mass spectrometry to analyze O-deacylated LOS from C. jejuni. In an attempt to optimize the separation conditions, the effect of methanol on the separation of LOS was investigated. It was found that methanol resulted in stronger adsorption of LOS onto the wall of fused-silica capillary. In this paper, we applied this adsorption to perform electrophoresis-assisted open-tubular liquid chromatography electrospray mass spectrometry for the analysis of O-deacylated LOS mixtures from C. jejuni. The analytical potential of the proposed strategy for the analysis of O-deacylated LOS glycoforms from five bacterial colonies is demonstrated. Online tandem mass spectrometry is shown to provide a powerful tool for characterization of variations in the hexosamine backbone, phosphorylation of the lipid A, and sialic acid sequence information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200500145 | DOI Listing |
Arch Immunol Ther Exp (Warsz)
August 2019
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland.
The present studies prove that conjugation of meningococcal lipooligosaccharides through their non-reducing terminus conserves their inner epitopes resulting in conjugates potent to induce a protective immune response. Four different oligosaccharides were obtained by specific degradations of the same L7 lipooligosaccharide (L7-LOS), and each was linked to tetanus toxoid by direct reductive amination. Two were truncated oligosaccharides with incomplete inner epitopes and were obtained by mild acid hydrolysis of lipooligosaccharide.
View Article and Find Full Text PDFGlycobiology
March 2017
Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research, 23845 Borstel, Germany.
Xanthomonas translucens pv. translucens (Xtt) is a Gram-negative pathogen of crops from the plant family Poaceae. The lipopolysaccharide (LPS) of Xtt was isolated and chemically characterized.
View Article and Find Full Text PDFJ Lipid Res
March 2009
Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121; Department of Laboratory Medicine, University of California, San Francisco, CA 94143. Electronic address:
Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis.
View Article and Find Full Text PDFJ Biol Chem
January 2008
Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar.
View Article and Find Full Text PDFElectrophoresis
September 2005
Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada.
Lipooligosaccharide (LOS) is the major component of the external membrane of Campylobacter jejuni. LOS contains a hydrophobic moiety, lipid A, and a hydrophilic moiety, oligosaccharide. Due to the unique mimicry of human ganglioside structures and potential involvement in the induction of the autoimmune polyneuropathies, Guillain-Barré and Miller Fisher syndromes, the structural characterization of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!