A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic and phenotypic characteristics of human skeletal muscle fibers as predictors of glycogen utilization during electrical stimulation. | LitMetric

Characteristics of skeletal muscle such as fiber type composition and activities of key metabolic enzymes have been purported to affect glycogen utilization. However, the relative importance individual factors may have in predicting glycogen utilization of individual muscle fibers has not been addressed. Thus, we sought to determine the relative importance that metabolic characteristics and phenotypic expression of individual fibers have in predicting fiber specific glycogen utilization during neuromuscular electrical stimulation (NMES) exercise. Biopsies were taken from the m, vastus lateralis (VL) of eight recreationally active males before and immediately after 30 min of non-fatiguing NMES and analyzed for type (I, IIa and IIx), succinate dehydrogenase activity (SDH), glycerol-phosphate dehydrogenase activity (GPDH), quantitative-actomyosin adenosine triphosphatase activity (qATPase), and glycogen content. Our results demonstrate that a ratio of enzyme activities representing pathways for energy supply and energy demand (SDH: qATPase) accounted for more of the variance in glycogen utilization (y=0.2091 e(-0.0329x ), R2=0.622, P< or = 0.0001) than SDH (R2=0.321) or qATPase (R2=0.365) alone. Fiber phenotype was also a significant predictor of glycogen utilization, but to a lesser extent than the other variables studied (R2=0.201). A ratio of the activities of enzymes representing pathways of energy supply and energy demand, represented by SDH:qATPase, is a better predictor of glycogen utilization than either of its components independently while fiber phenotype, although a statistically significant predictor of glycogen utilization, may not be the most appropriate determinate of the functional characteristics of an individual fiber.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-005-0003-xDOI Listing

Publication Analysis

Top Keywords

glycogen utilization
32
predictor glycogen
12
glycogen
9
skeletal muscle
8
muscle fibers
8
utilization
8
electrical stimulation
8
dehydrogenase activity
8
representing pathways
8
pathways energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!