A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Release and sequestration of Ca2+ by a caffeine- and ryanodine-sensitive store in a sub-population of human SH-SY5Y neuroblastoma cells. | LitMetric

AI Article Synopsis

  • * The caffeine response was unique because it didn't rely on external Ca(2+) and was blocked by ryanodine, indicating that these receptors impact Ca(2+) storage and release in the cells.
  • * Our findings suggest that there is a ryanodine and caffeine-sensitive store in SH-SY5Y cells that can both release Ca(2

Article Abstract

We have used single cell fluorescence imaging techniques to examine the role that ryanodine receptors play in the stimulus-induced Ca(2+) responses of SH-SY5Y cells. The muscarinic agonist methacholine (1mM) resulted in a Ca(2+) signal in 95% of all cells. Caffeine (30 mM) however stimulated a Ca(2+) signal in only 1-7% of N-type (neuroblastic) cells within any given field. The caffeine response was independent of extracellular Ca(2+), regenerative in nature, and abolished in a use-dependent fashion by ryanodine. In caffeine-responsive cells, the magnitude of the methacholine-induced Ca(2+) signal was inhibited by 75.07 +/- 5.51% by pretreatment with caffeine and ryanodine, suggesting that the caffeine-sensitive store may act as a Ca(2+) source after muscarinic stimulation. When these data were combined with equivalent data from non-caffeine-responsive cells, the degree of apparent inhibition was significantly reduced. In contrast, after store depletion by caffeine, the Ca(2+) signal induced by 55 mM K(+) was potentiated 2.5-fold in the presence of ryanodine, suggesting that the store may act a Ca(2+) sink after depolarisation. We conclude that a caffeine- and ryanodine-sensitive store can act as a Ca(2+) source and sink in SH-SY5Y cells, and that effects of the store can become obscured if data from caffeine-insensitive cells are not excluded.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2005.06.001DOI Listing

Publication Analysis

Top Keywords

ca2+ signal
16
store ca2+
12
ca2+
10
caffeine- ryanodine-sensitive
8
ryanodine-sensitive store
8
cells
8
sh-sy5y cells
8
ryanodine suggesting
8
ca2+ source
8
store
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!