Hypermethylation of CpG sites within the promoter region of the O6-methylguanine-DNA methyltransferase (MGMT) gene occurs frequently in human cancer, preventing both MGMT expression and repair of alkylation damage. To assess the role of MGMT in the development of mouse skin tumors induced by initiation-promotion protocols, methylation of the MGMT promoter was examined in tumor DNA using methylation-specific PCR. To determine whether MGMT promoter methylation was affected by the tumor induction protocol, tumors were initiated by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA) or mezerein. Although the MGMT promoter was not methylated in normal skin, promoter methylation was found in 56 of 136 papillomas (41.2%) and in 19 of 37 squamous cell carcinomas (51.4%). When methylation of the MGMT promoter was compared in the 4 treatment groups, hypermethylation was found more frequently in tumors initiated by DMBA and promoted by mezerein, a protocol associated with a high frequency of malignant conversion. Methylation was found in some tumors as early as 5 weeks after initiation, but the methylation frequency increased with time. MGMT promoter methylation reduced MGMT expression as determined by immunohistochemistry. Although MGMT promoter methylation was not generally correlated with ras mutations, the frequency of MGMT methylation was higher in MNNG-initiated, mezerein-promoted papillomas with mutations in Ha-ras compared to papillomas with Ki-ras. Methylation of the MGMT promoter, associated with reduced MGMT expression, is found in nearly half of mouse skin tumors, but varies with both the tumor initiator and tumor promoter, and may be a key step in the progression from papillomas to carcinomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.21316 | DOI Listing |
Bioengineering (Basel)
December 2024
Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.
The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland.
Background And Purpose: Whether differences in the O-methylguanine-DNA methyltransferase () promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding status by using a novel distance-resolved 3D evaluation.
Materials And Methods: One hundred one patients with wild-type GBM were retrospectively analyzed.
Mol Biol Rep
January 2025
Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.
Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.
Neuro Oncol
January 2025
Department of Neurology, University Hospital and University of Zurich, Switzerland.
Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.
Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.
Cancer Lett
January 2025
Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Electronic address:
Supramaximal resection in glioblastoma, concerning non-contrast-enhancing (nCE) tumors, exhibited additional survival benefits. However, whether all patients can benefit from supramaximal resection of nCE tumors and the optimal resection target remains unclear, especially for the glioblastoma, IDH-wildtype under the new WHO CNS tumor classification. Clinical and surgical characteristics were collected from 155 patients with newly diagnosed glioblastoma, IDH-wildtype from the Chinese Glioma Genome Atlas, and a prospective cohort of 128 patients was enrolled for external validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!