Genome sequences of model organisms provide a unique opportunity to obtain insight into the complete diversity of any transposable element (TE) group. A limited number of chromoviruses, the chromodomain containing genus of Metaviridae, is known from plant, fungal and vertebrate genomes. By searching diverse eukaryotic genome databases, we have found a surprisingly large number of new, structurally intact and highly conserved chromoviral elements, greatly exceeding the number of previously known chromoviruses. In this study, we examined the diversity, origin and evolution of chromoviruses in Eukaryota. Chromoviral diversity in plants, fungi and vertebrates, as shown by phylogenetic analyses, was found to be much greater than previously expected. A novel centromere-specific chromoviral lineage was found to be widespread and highly conserved in all seed plants. The age of chromoviruses has been significantly extended by finding their representatives in the most basal plant lineages (green and red algae), in Heterokonta (oomycetes) and in Cercozoa (plasmodiophorids). The evolutionary origin of chromoviruses has been found to be no earlier than in Cercozoa, since none can be found in the basal eukaryotic lineages, despite the extensive genome data. The evolutionary dynamics of chromoviruses can be explained by a strict vertical transmission in plants and fungi, while in Metazoa it is more complex. The currently available genome data clearly show that chromoviruses are the most widespread and one of the oldest Metaviridae clade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000084987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!