Cardiac arrhythmia is an important cause of death in patients with heart failure (HF) and inherited arrhythmia syndromes, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). Alterations in intracellular calcium handling play a prominent role in the generation of arrhythmias in the failing heart. Diastolic calcium leak from the sarcoplasmic reticulum (SR) via cardiac ryanodine receptors (RyR2) may initiate delayed afterdepolarizations and triggered activity leading to arrhythmias. Similarly, SR Ca(2+) leak through mutant RyR2 channels may cause triggered activity during exercise in patients with CPVT. Novel therapeutic approaches, based on recent advances in the understanding of the cellular mechanisms underlying arrhythmias in HF and CPVT, are currently being evaluated to specifically correct defective Ca(2+) release in these lethal syndromes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1341.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!