P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725291PMC
http://dx.doi.org/10.1523/JNEUROSCI.5189-04.2005DOI Listing

Publication Analysis

Top Keywords

p2x3 receptors
16
recovery desensitization
16
rate recovery
16
inhibition p2x3
12
p2x3
8
agonist
8
channel activation
8
recovery
8
affinity desensitized
8
desensitized p2x3
8

Similar Publications

Mechanistic insights into the selective targeting of P2X3 receptor by camlipixant antagonist.

J Biol Chem

December 2024

Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA. Electronic address:

ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear.

View Article and Find Full Text PDF

Adipose stem-cell-derived microvesicles ameliorate long-term bladder ischemia-induced bladder underactivity.

J Formos Med Assoc

December 2024

Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan. Electronic address:

Background/purpose: The mechanism for long-term hypoxia/ischemia induced bladder underactivity is uncertain. It requires an effectively therapeutic treatment. Therefore, we determined the pathophysiologic mechanisms of long-term bilateral partial iliac arterial occlusion (BPAO)-induced bladder underactivity and explored the therapeutic potential of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs) on BPAO-induced bladder dysfunction.

View Article and Find Full Text PDF

Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y receptors and neurons to adenosine triphosphate (ATP) through P2X receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y expression in the ENS, gene sequencing suggests that P2Y expression is more enriched in neurons than glia.

View Article and Find Full Text PDF

The Clinical Approach to Chronic Cough.

J Allergy Clin Immunol Pract

November 2024

Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.

Chronic cough remains a significant clinical challenge, affecting approximately 10% of the population and leading to significant impairment in psychological, social, and physical quality of life. In recent years, efforts have intensified to elucidate the mechanisms underlying chronic cough and to focus on investigating and treating refractory chronic cough (RCC). A "treatable trait" approach, which focuses on identifying and addressing the specific associated causes of chronic cough, has gained traction.

View Article and Find Full Text PDF
Article Synopsis
  • * Patients with this pain condition show central sensitisation, leading to abnormal sensitivity to pain even without visible inflammation.
  • * The review discusses how changes in neuronal ion channels, such as TRPV1 and NMDA receptors, are linked to the altered nociception in myofascial orofacial pain, reinforcing the idea of nociplastic mechanisms at play.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!