scAvd (single-chain avidin, where two dcAvd are joined in a single polypeptide chain), having four biotin-binding domains, was constructed by fusion of topologically modified avidin units. scAvd showed similar biotin binding and thermal stability properties as chicken avidin. The DNA construct encoding scAvd contains four circularly permuted avidin domains, plus short linkers connecting the four domains into a single polypeptide chain. In contrast with wild-type avidin, which contains four identical avidin monomers, scAvd enables each one of the four avidin domains to be independently modified by protein engineering. Therefore the scAvd scaffold can be used to construct spatially and stoichiometrically defined pseudotetrameric avidin molecules showing different domain characteristics. In addition, unmodified scAvd could be used as a fusion partner, since it provides a unique non-oligomeric structure, which is fully functional with four high-affinity biotin-binding sites. Furthermore, the subunit-to-domain strategy described in the present study could be applied to other proteins and protein complexes, facilitating the development of sophisticated protein tools for applications in nanotechnology and life sciences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316287PMC
http://dx.doi.org/10.1042/BJ20051038DOI Listing

Publication Analysis

Top Keywords

avidin
9
single-chain avidin
8
circularly permuted
8
single polypeptide
8
polypeptide chain
8
avidin domains
8
scavd
6
domains
5
tetravalent single-chain
4
avidin subunits
4

Similar Publications

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Negative staining electron microscopy is one of the easiest ways to determine the shape and dimensions of multimeric protein complexes over 100 kDa molecular weight. This method requires small volumes (< 10 μL) of dilute protein (0.01-0.

View Article and Find Full Text PDF

Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.

View Article and Find Full Text PDF

Background: CD133 is regarded as a marker and target for cancer stem cells (CSCs) in various types of tumors, including hepatocellular carcinoma (HCC). The expressions of CD133 and programmed cell death ligand 1 (PD-L1) in CSCs exhibit a positive feedback regulatory effect. This effect promotes CSC proliferation and immune escape, ultimately leading to tumor progression and poor prognosis.

View Article and Find Full Text PDF

Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!