Background And Purpose: In recent studies, measures of whole brain atrophy were strongly correlated with neuropsychological testing, explaining more variance than measures of lesion burden in patients with multiple sclerosis. The relationship between regional lobar atrophy and cognitive impairment is yet to be examined. We endeavored to assess the clinical significance of regional lobar atrophy in multiple sclerosis.
Methods: In a cross-sectional study, we evaluated 31 patients with multiple sclerosis with brain MR imaging and neuropsychological testing. Impairment was determined by comparison with demographically matched healthy controls. MR imaging generated measures of lesion burden (fluid-attenuated inversion recovery hyperintense volume), general atrophy (brain parenchymal fraction), central atrophy (lateral ventricle volume), and lobar atrophy (regional brain parenchymal fraction of frontal, temporal, parietal, and occipital lobes in each hemisphere). Neuropsychological testing emphasized measures of processing speed and memory, because these are commonly affected in multiple sclerosis.
Results: Patients with multiple sclerosis showed significant atrophy and impairment on all neuropsychological tests. Regional atrophy accounted for the most variance in all regression models predicting memory performance. Left temporal atrophy was the primary predictor of auditory/verbal memory (partial r's = 0.55-0.61), and both left and right temporal atrophy predicted visual/spatial memory performance (partial r's = 0.51-0.67). Models predicting learning consistency retained frontal lobe atrophy measures (partial r's = 0.44-0.68). Central and general atrophy measures were the primary predictors in modeling processing speed (partial r's = 0.42-0.64).
Conclusion: Regional atrophy accounts for more variance than lesion burden, whole brain atrophy, or lateral ventricle volume in predicting multiple sclerosis-associated memory dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975175 | PMC |
Brain
January 2025
Comprehensive Epilepsy Program, Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.
Seizures in people with dementia (PWD) are associated with faster cognitive decline and worse clinical outcomes. However, the relationship between ongoing seizure activity and postmortem neuropathology in PWD remains unexplored. We compared post-mortem findings in PWD with active, remote, and no seizures using multicentre data from 39 Alzheimer's Disease Centres from 2005 to 2021.
View Article and Find Full Text PDFNeuropathology
January 2025
Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.
The degeneration of pyramidal tracts has been reported in frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43) pathology (FTLD-TDP) type C. Herein, we examined the detailed pathology of the primary motor area and pyramidal tracts in the central nervous system in four autopsy cases of FTLD-TDP type C, all of which were diagnosed by neuropathological, biochemical, and genomic analyses. Three patients showed right dominant atrophy of the frontal and temporal lobes, while the other patient showed left dominant atrophy.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Single-subject voxel-based morphometry (VBM) is a powerful technique for reader-independent detection of brain atrophy in structural magnetic resonance imaging (MRI) to support the (differential) diagnosis and staging of neurodegenerative diseases in individual patients. However, VBM is sensitive to the MRI scanner platform and details of the acquisition sequence. To mitigate this limitation, we recently proposed and validated a convolutional neural network (CNN)-based VBM which does not rely on a normative reference database.
View Article and Find Full Text PDFAm J Geriatr Psychiatry
December 2024
Department of Clinical and Experimental Sciences (DA, BB), University of Brescia, Brescia, Italy; Molecular Markers Laboratory (BB), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. Electronic address:
Objectives: The present study aims to assess the prevalence, associated clinical symptoms, longitudinal changes, and imaging correlates of Loss of Insight (LOI), which is still unexplored in syndromes associated with Frontotemporal Lobar Degeneration (FTLD).
Design: Retrospective longitudinal cohort study, from Oct 2009 to Feb 2023.
Setting: Tertiary Frontotemporal Dementia research clinic.
Neurology
November 2024
From the Departments of Neurology (H.W., J.R.D., H.C., J.G.-R., K.A.J.), Psychology (M.M.M.), and Radiology (N.T.T.P., V.J.L., J.L.W.), Mayo Clinic, Rochester, MN; and Department of Neuroscience (Neuropathology) (D.W.D.), Mayo Clinic, Jacksonville, FL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!