Cystatins are reversible, tightly binding inhibitors of cysteine proteases. Filarial cystatins have been ascribed immunomodulatory properties and have been implicated in protective immunity. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cystatin gene locus of A. viteae. The gene is composed of 4 exons separated by 3 introns and spans approximately 2 kb of genomic DNA. The upstream genomic sequence contains transcriptional factor binding sites such as AP-1 and NF-Y, an inverted CCAAT sequence, and a TATA box. To investigate sites of cystatin expression, Caenorhabditis elegans worms were transformed by microinjection with the putative promoter region and the first exon of the A. viteae cystatin gene fused to the reporter GFP. In transgenic worms fluorescence was observed in the pharyngeal and rectal gland cells suggesting that cystatin is secreted. Additionally, A. viteae cystatin was expressed in C. elegans to explore its potential as an expression system for filarial genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187909PMC
http://dx.doi.org/10.1186/1475-2883-4-9DOI Listing

Publication Analysis

Top Keywords

viteae cystatin
12
genomic organization
8
expression caenorhabditis
8
caenorhabditis elegans
8
cystatin gene
8
cystatin
6
studies acanthocheilonema
4
viteae
4
acanthocheilonema viteae
4
genomic
4

Similar Publications

Objective: The aim of this study was to examine whether the natural protease inhibitor Av-cystatin (rAv17) of the parasitic nematode Acanthocheilonema viteae exerts anti-inflammatory effects in an in vitro model of lipopolysaccharide (LPS)-activated microglia.

Methods: Primary microglia were harvested from the brains of 2-day-old Wistar rats and cultured with or without rAv17 (250 nM). After 6 and 24 h the release of nitric oxide (Griess reagent) and TNF-α (ELISA) was measured in the supernatant.

View Article and Find Full Text PDF

Parasitic nematodes can downregulate the immune response of their hosts through the induction of immunoregulatory cytokines such as interleukin-10 (IL-10). To define the underlying mechanisms, we measured in vitro the production of IL-10 in macrophages in response to cystatin from Acanthocheilonema viteae, an immunomodulatory protein of filarial nematodes, and developed mathematical models of IL-10 regulation. IL-10 expression requires stimulation of the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) and p38, and we propose that a negative feedback mechanism, acting at the signalling level, is responsible for transient IL-10 production that can be followed by a sustained plateau.

View Article and Find Full Text PDF

Cystatins are reversible, tightly binding inhibitors of cysteine proteases. Filarial cystatins have been ascribed immunomodulatory properties and have been implicated in protective immunity. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cystatin gene locus of A.

View Article and Find Full Text PDF

Filarial infections are characterized by high IgE antibody responses. So far, it is not clear whether IgE antibodies are involved in protection, pathology or both. We established a bioassay to detect reactive IgE antibodies in jirds infected with the filaria Acanthocheilonema viteae.

View Article and Find Full Text PDF

Cystatins of parasitic nematodes are well-described pathogenicity factors which contribute to downregulation of T-cell proliferation of their hosts and induce anti-inflammatory cytokine responses. We compared the immunomodulatory effects of two cystatins of the filarial nematodes Onchocerca volvulus and Acanthocheilonema viteae with two homologous proteins of the free-living nematode Caenorhabditis elegans. Like filarial cystatins, the C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!