We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.048701DOI Listing

Publication Analysis

Top Keywords

asynchronous stochastic
8
stochastic update
8
number attractors
8
power law
8
dynamics critical
4
critical kauffman
4
kauffman networks
4
networks asynchronous
4
update number
4
attractors critical
4

Similar Publications

The first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asyn-chronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging.

View Article and Find Full Text PDF

A dynamic event-triggered load frequency control (LFC) is studied for interconnected multiarea power systems (IMAPSs) with stochastic semi-Markov parameters from the perspective of finite-time interval. To facilitate the sudden changes, the underlying semi-Markov process (SMP) is adopted to characterize the random behavior of IMAPSs. A dynamic event-triggered protocol (DETP) is developed to modulate the transmission frequency while maintaining predefined system performance.

View Article and Find Full Text PDF

Climatic variation can play a critical role in driving synchronous and asynchronous patterns in the expression of life history characteristics across vast spatiotemporal scales. The synchronisation of traits, such as an individual's growth rate, under environmental stress may indicate a loss of phenotypic diversity and thus increased population vulnerability to stochastic deleterious events. In contrast, synchronous growth under favourable ecological conditions and asynchrony during unfavourable conditions may help population resilience and buffer against the negative implications of future environmental variability.

View Article and Find Full Text PDF

Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti-phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ~50,000 cells from cultures of a human pathobiont, , infected with a lytic bacteriophage.

View Article and Find Full Text PDF

This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!