Quantum electrodynamics for rho mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the rho+ is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M(rho0)-M(rho+/-) approximately 1 MeV at tree order.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.95.012001DOI Listing

Publication Analysis

Top Keywords

quantum electrodynamics
8
electrodynamics vector
4
vector mesons
4
mesons quantum
4
electrodynamics rho
4
rho mesons
4
mesons considered
4
considered tree
4
tree level
4
level gyromagnetic
4

Similar Publications

Refraction of the Two-Photon Multimode Field via a Three-Level Atom.

Entropy (Basel)

January 2025

Center for Nonlinear Sciences and Department of Physics, University of North Texas, Denton, TX 76203, USA.

Classically, the refractive index of a medium is due to a response on said medium from an electromagnetic field. It has been shown that a single two-level atom interacting with a single photon undergoes dispersion. The following extends that analyses to a three-level system interacting with two photons.

View Article and Find Full Text PDF

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.

View Article and Find Full Text PDF

Entanglement and quantum discord in the cavity QED models.

Heliyon

January 2025

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.

We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!