The observation of reduced rotational inertia in a cell containing solid 4He has been interpreted as evidence for superfluidity of the solid. We propose an alternative explanation: slippage of the solid, due to grain boundary premelting between the solid and dense adsorbed layers at the container wall. We calculate the range of film thickness, and determine the viscosity that will account for the missing rotational inertia. Grain boundary premelting also explains inertial anomalies in an earlier study of solid helium in porous glass and indicates that the liquid is partially superfluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.94.235301 | DOI Listing |
J Sports Sci
January 2025
Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany.
In snowboard freestyle, rotation is the key indicator of trick difficulty, encouraging riders to perform tricks with more rotation. In many cases, snowboarders learn and practice tricks using training tools such as trampolins and/or landingbags before they transfer this tricks on-snow. It has not yet been scientifically investigated which movement parameters are primarily responsible for the acquisistion of increasingly difficult cork tricks.
View Article and Find Full Text PDFTraffic Inj Prev
January 2025
School of vehicle and mobility, Tsinghua University, Beijing, China.
Objective: Previous research has established the effectiveness of active pretensioning seatbelts (APS), also termed motorized pretensioning seatbelts, in mitigating forward leaning and out-of-position displacement during pre-crash scenarios. In the Chinese market, APS trigger times are typically set later than those reported in the literature. This study investigates the real-world performance of APS systems with delayed trigger times under emergency braking conditions.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Centre for Aeronautics, Faculty of Engineering and Applied Sciences, Cranfield University, Bedford MK43 0AL, UK.
A Flapping-Wing Rotor (FWR) is a novel bio-inspired micro aerial vehicle configuration, featuring unique wing motions which combine active flapping and passive rotation for high lift production. Power efficiency in flight has recently emerged as a critical factor in FWR development. The current study investigates an elastic flapping mechanism to improve FWRs' power efficiency by incorporating springs into the system.
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
University of Science and Technology of China, Hefei, People's Republic of China.
Atomically resolved scanning tunneling microscope (STM) capable of in situ rotation in a narrow magnet bore has become a long-awaited but challenging technique in the field of strong correlation studies since it can introduce the orientation of the strong magnetic field as a control parameter. This article presents the design and functionality of a piezoelectrically driven rotatable STM (RSTM), operating within a 12 T cryogen-free magnet and achieving a base temperature below 1.8 K, along with spectroscopic capabilities.
View Article and Find Full Text PDFPLoS One
December 2024
Tianjin Mingyang Wind Power Equipment Co., Ltd. Tianjin, China.
Building a high-proportion renewable energy power system is a key measure to address the challenges of the energy revolution and climate change. However, current high-proportion renewable energy systems face issues of frequency instability and voltage fluctuations. To address these challenges, this paper proposes a novel topology for a stator free speed regulating wind turbine generation system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!