The magnetization reversal of ultrathin Co films on Cu(001) has been investigated by grazing ion scattering and magneto-optical Kerr effect. Differences in the behavior of surface and bulk magnetization are found and attributed to the reduced coordination and site symmetry at the surface. The reversal behavior of the surface magnetization depends on the chemical surface composition. For pure Co films, the reversal of the bulk magnetization is preceded by a complete reversal of the surface magnetization. A particular magnetic state of the surface is suggested as a precursor for magnetization reversal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.94.227205 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:
Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).
View Article and Find Full Text PDFMagn Reson Med
January 2025
MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.
Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.
Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.
View Article and Find Full Text PDFShoulder Elbow
January 2025
Department of Orthopaedic Surgery, Tauranga Hospital, Tauranga, New Zealand.
Background: The underlying shoulder pathology in radiographic superior escape of the humeral head and association between acromiohumeral interval (AHI) on radiographs and magnetic resonance imaging (MRI) are poorly understood.
Methods: A retrospective review of shoulder radiographs and MRI scans was undertaken. AHI was measured using both modalities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!