A phase-field model that allows for quantitative simulations of low-speed eutectic and peritectic solidification under typical experimental conditions is developed. Its cornerstone is a smooth free-energy functional, specifically designed so that the stable solutions that connect any two phases are completely free of the third phase. For the simplest choice for this functional, the equations of motion for each of the two solid-liquid interfaces can be mapped to the standard phase-field model of single-phase solidification with its quartic double-well potential. By applying the thin-interface asymptotics and by extending the antitrapping current previously developed for this model, all spurious corrections to the dynamics of the solid-liquid interfaces linear in the interface thickness W can be eliminated. This means that, for small enough values of W, simulation results become independent of it. As a consequence, accurate results can be obtained using values of W much larger than the physical interface thickness, which yields a tremendous gain in computational power and makes simulations for realistic experimental parameters feasible. Convergence of the simulation outcome with decreasing W is explicitly demonstrated. Furthermore, the results are compared to a boundary-integral formulation of the corresponding free-boundary problem. Excellent agreement is found, except in the immediate vicinity of bifurcation points, a very sensitive situation where noticeable differences arise. These differences reveal that, in contrast to the standard assumptions of the free-boundary problem, out of equilibrium the diffuse trijunction region of the phase-field model can (i) slightly deviate from Young's law for the contact angles, and (ii) advance in a direction that forms a finite angle with the solid-solid interface at each instant. While the deviation (i) extrapolates to zero in the limit of vanishing interface thickness, the small angle in (ii) remains roughly constant, which indicates that it might be a genuine physical effect, present even for an atomic-scale interface thickness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.72.011602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!