A virtually complete description of the topology of stationary incompressible Euler flows and the magnetic field satisfying the magnetostatic equation is given by a theorem due to Arnol'd. We apply this theorem to describe the topology of stationary states of plasmas with significant fluid flow, obeying the Hall magnetohydrodynamics model equations. In the context of the integrability (nonchaotic topology) of the magnetic and velocity fields, we discuss the validity of conditions analogous to that of Greene and Johnson, which, in the case of magnetostatic equations, states that the line integral dl/B is the same for each closed magnetic field line on a given magnetic surface. We also show how this property follows from the existence of a continuous volume-preserving symmetry of the magnetic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.71.057401 | DOI Listing |
ASAIO J
January 2025
From the Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
The use of cardiac devices, including mechanical circulatory support (MCS), cardiac implantable electronic devices (CIEDs), and pacing wires, has increased and significantly improved survival in patients with severe cardiac failure. However, these devices are frequently associated with acute brain injuries (ABIs) including ischemic strokes, intracranial hemorrhages, seizures, and hypoxic-ischemic brain injury which contribute substantially to morbidity and mortality. Computed tomography (CT) and magnetic resonance imaging (MRI), the standard imaging modalities for ABI diagnosis, can pose significant challenges in this patient population due to the risks associated with patient transportation and the incompatibility of ferromagnetic components of certain cardiac devices with high magnetic field of the MRI.
View Article and Find Full Text PDFACS Nano
January 2025
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations.
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey.
Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Field analysis of heavy metals in biological samples is essential for assessing their potential threats to human health. The development of portable pretreatment and detection devices is crucial to address this challenge. Herein, a magnetic field-accelerated nonthermal plasma digestion device using dielectric barrier discharge (DBD) is designed for the rapid and environmentally friendly pretreatment of biological samples and subsequently combined with point discharge-optical emission spectrometry (PD-OES) for sensitive determination of heavy metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!