Forward symplectic integrators and the long-time phase error in periodic motions.

Phys Rev E Stat Nonlin Soft Matter Phys

George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA.

Published: May 2005

We show that when time-reversible symplectic algorithms are used to solve periodic motions, the energy error after one period is generally two orders higher than that of the algorithm. By use of correctable algorithms, we show that the phase error can also be eliminated two orders higher than that of the integrator. The use of fourth order forward time step integrators can result in sixth order accuracy for the phase error and eighth order accuracy in the periodic energy. We study the one-dimensional harmonic oscillator and the two-dimensional Kepler problem in great detail, and compare the effectiveness of some recent fourth order algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.71.056703DOI Listing

Publication Analysis

Top Keywords

phase error
12
periodic motions
8
orders higher
8
fourth order
8
order accuracy
8
forward symplectic
4
symplectic integrators
4
integrators long-time
4
long-time phase
4
error
4

Similar Publications

This study attempted to optimize the adaptive neuro-fuzzy inference system (ANFIS) using particle swarm optimization (PSO) and a genetic algorithm (GA) for calculating occupational risk. Numerous studies have shown that the ANFIS is a good approach for predicting engineering problems. However, it is not well investigated in the area of risk assessment.

View Article and Find Full Text PDF

When developing general-purpose robot software components, we often lack complete knowledge of the specific contexts in which they will be executed. This limits our ability to make predictions, including our ability to detect program bugs statically. Since running a robot is an expensive task, finding errors at runtime can prolong the debugging loop or even cause safety hazards.

View Article and Find Full Text PDF

Background: Accurate assessment of oxygen delivery relative to oxygen demand is crucial in the care of a critically ill patient. The central venous oxygen saturation (Svo) enables an estimate of cardiac output yet obtaining these clinical data requires invasive procedures and repeated blood sampling. Interpretation remains subjective and vulnerable to error.

View Article and Find Full Text PDF

The replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress.

View Article and Find Full Text PDF

Fruit firmness is a critical attribute for evaluating the quality of peaches and nectarines. The precise measurement of fruit firmness plays a key role in maturity assessment, determining harvest periods, and predicting shelf-life. Texture analyzers are increasingly employed for accurate fruit firmness measurement, offering advantages in reducing operator errors compared to the traditional Magness-Taylor test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!