The pendulum is the simplest system having all the basic properties inherent in dynamic stochastic systems. In the present paper we investigate the pendulum with the aim to reveal the properties of a quantum analogue of dynamic stochasticity or, in other words, to obtain the basic properties of quantum chaos. It is shown that a periodic perturbation of the quantum pendulum (similarly to the classical one) in the neighborhood of the separatrix can bring about irreversible phenomena. As a result of recurrent passages between degenerate states, the system gets self-chaotized and passes from the pure state to the mixed one. Chaotization involves the states, the branch points of whose levels participate in a slow "drift" of the system along the Mathieu characteristics this "drift" being caused by a slowly changing variable field. Recurrent relations are obtained for populations of levels participating in the irreversible evolution process. It is shown that the entropy of the system first grows and, after reaching the equilibrium state, acquires a constant value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.71.056211 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, Uppsala SE-75120, Sweden.
[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China. Electronic address:
Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Independent Researcher, Leesburg, VA 20176, USA.
Vopson and Lepadatu recently proposed the Second Law of Infodynamics. The law states that while the total entropy increases, information entropy declines over time. They state that the law has applications over a wide range of disciplines, but they leave many key questions unanswered.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
Layered transition metal oxides (LTMOs) are attractive cathode candidates for rechargeable secondary batteries because of their high theoretical capacity. Unfortunately, LTMOs suffer from severe capacity attenuation, voltage decay, and sluggish kinetics, resulting from irreversible lattice oxygen evolution and unstable cathode-electrolyte interface. Besides, LTMOs accumulate surface residual alkali species, like hydroxides and carbonates, during synthesis, limiting their practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!