Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model.

Phys Rev E Stat Nonlin Soft Matter Phys

Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany.

Published: May 2005

We study multicellular tumor spheroids by introducing a new three-dimensional agent-based Voronoi-Delaunay hybrid model. In this model, the cell shape varies from spherical in thin solution to convex polyhedral in dense tissues. The next neighbors of the cells are provided by a weighted Delaunay triangulation with on average linear computational complexity. The cellular interactions include direct elastic forces and cell-cell as well as cell-matrix adhesion. The spatiotemporal distribution of two nutrients--oxygen and glucose--is described by reaction-diffusion equations. Viable cells consume the nutrients, which are converted into biomass by increasing the cell size during the G1 phase. We test hypotheses on the functional dependence of the uptake rates and use computer simulations to find suitable mechanisms for the induction of necrosis. This is done by comparing the outcome with experimental growth curves, where the best fit leads to an unexpected ratio of oxygen and glucose uptake rates. The model relies on physical quantities and can easily be generalized towards tissues involving different cell types. In addition, it provides many features that can be directly compared with the experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.71.051910DOI Listing

Publication Analysis

Top Keywords

multicellular tumor
8
uptake rates
8
tumor spheroid
4
spheroid off-lattice
4
off-lattice voronoi-delaunay
4
cell
4
voronoi-delaunay cell
4
model
4
cell model
4
model study
4

Similar Publications

Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules.

View Article and Find Full Text PDF

Deepening our understanding of neuro-cancer interactions can innovate brain tumor treatment. This mini review unfolds the most relevant and recent insights into the neural mechanisms contributing to brain tumor initiation, progression, and resistance, including synaptic connections between neurons and cancer cells, paracrine neuro-cancer signaling, and cancer cells' intrinsic neural properties. We explain the basic and clinical-translational relevance of these findings, identify unresolved questions and particularly interesting future research avenues, such as central nervous system neuro-immunooncology, and discuss the potential transferability to extracranial cancers.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Single cell combined with laser ablation ICP-MS to study cisplatinum (IV) loaded nanoparticles penetration pathways in osteosarcoma spheroids.

Anal Chim Acta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:

Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!