The molecular evolution of cultivated rice Oryza sativa L. has long been a subject of rice evolutionists. To investigate genetic diversity within and differentiation between the indica and japonica subspecies, 22 accessions of indica and 35 of japonica rice were examined by five microsatellite loci from each chromosome totalling 60 loci. Mean gene diversity value in the indica rice (H=0.678) was 1.18 times larger than in the japonica rice (H=0.574). Taking the sampling effect into consideration, average allele number in the indica rice was 1.40 times higher than that in the japonica rice (14.6 vs 10.4 per variety). Chromosome-based comparisons revealed that nine chromosomes (1, 2, 3, 4, 5, 8, 9, 10 and 11) harboured higher levels of genetic diversity within the indica rice than the japonica rice. An overall estimate of F(ST) was 0.084-0.158, indicating that the differentiation is moderate and 8.4-15.8% of the total genetic variation resided between the indica and japonica groups. Our chromosome-based comparisons further suggested that the extent of the indica-japonica differentiation varied substantially, ranging from 7.62% in chromosome 3 to 28.72% in chromosome 1. Cluster analyses found that most varieties formed merely two clusters for the indica and japonica varieties, in which two japonica varieties and five indica varieties were included in the counterpart clusters, respectively. The 12 chromosome-based trees further showed that 57 rice varieties cannot be clearly clustered together into either the indica or japonica groups, but displayed relatively different clustering patterns. The results suggest that the process of indica japonica differentiation may have proceeded through an extensive contribution by the alleles of the majority in the rice genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s0016672304007293 | DOI Listing |
Genes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
J Trace Elem Med Biol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan. Electronic address:
Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572024, China. Electronic address:
Rice is a major source of dietary cadmium (Cd), a toxic heavy metal that poses serious threat to human health. How rice takes up and accumulates Cd is not fully understood. Here, we characterize the function of a cation/H exchanger, OsCAX2, in Cd uptake in roots and Cd accumulation in shoots and grains.
View Article and Find Full Text PDFRice (N Y)
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea.
Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!