Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter.

Yeast

Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.

Published: July 2005

Maltotriose is the second most abundant fermentable sugar in wort and, due to incomplete fermentation, residual maltotriose in beer causes both quality and economic problems in the brewing industry. To identify genes that might improve utilization of maltotriose, we developed a library containing genomic DNA from four lager strains and a laboratory Saccharomyces cerevisiae strain and isolated transformants that could grow on YP/2% maltotriose in the presence of 3 mg/l of the respiratory inhibitor antimycin A. In this way we found a gene which shared 74% similarity with MPH2 and MPH3, 62% similarity with AGT1 and 91% similarity with MAL61 and MAL31, all encoding known maltose transporters. Moreover, the gene shared an even higher similarity (98%) with the uncharacterized Saccharomyces pastorianus mty1 gene (M. Salema-Oom, unpublished; NCBI Accession No. AJ491328). Therefore, we named the gene MTT1 (mty1-like transporter). We showed that the gene was present in four different lager strains but was absent from the laboratory strain CEN.PK113-7D. The ORF in the plasmid isolated from the library lacks 66 base pairs from the 3'-end of MTT1 but instead contains 54 bp of the vector. We named this ORF MTT1alt (NCBI Accession No. DQ010174). 14C-Maltose and repurified 14C-maltotriose were used to show that MTT1 and, especially, MTT1alt, encode maltose transporters for which the ratio between activities to maltotriose and maltose is higher than for most known maltose transporters. Introduction of MTT1 or MTT1alt into lager strain A15 raised maltotriose uptake by about 17% or 105%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.1279DOI Listing

Publication Analysis

Top Keywords

maltose transporters
12
maltotriose
8
lager strains
8
gene shared
8
ncbi accession
8
mtt1 mtt1alt
8
mtt1
5
gene
5
maltotriose utilization
4
lager
4

Similar Publications

Microbes experience dynamic conditions in natural habitats as well as in engineered environments, such as large-scale bioreactors, which exhibit increased mixing times and inhomogeneities. While single perturbations have been studied for several organisms and substrates, the impact of recurring short-term perturbations remains largely unknown. In this study, we investigated the response of Saccharomyces cerevisiae to repetitive gradients of four different sugars: glucose, fructose, sucrose, and maltose.

View Article and Find Full Text PDF

The Discovery of Novel ER-Localized Cellobiose Transporters Involved in Cellulase Biosynthesis in Trichoderma reesei.

J Basic Microbiol

December 2024

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Sugar transporters are of great importance in sensing and transporting varied sugars for cellulase biosynthesis of lignocellulolytic fungi. Nevertheless, the function and the relevant mechanism of sugar transporters in fungal cellulase biosynthesis remain to be explored. Here, putative maltose transporters Mal1, Mal2, Mal3, Mal4, and Mal5 in Trichoderma reesei were investigated.

View Article and Find Full Text PDF

Squeeze pumping of lipids and insecticides by ABCH transporter.

Cell

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive.

View Article and Find Full Text PDF

Objective: Jianpi huoxue decoction (JHD), a Chinese herbal formula, is commonly used for treating alcohol-associated liver disease (ALD). This study aimed to investigate the mechanism by which JHD affects intestinal barrier function in ALD rats.

Methods: The Sprague-Dawley rats were randomly divided into three groups: control group, model group and JHD group.

View Article and Find Full Text PDF

Specialization Restricts the Evolutionary Paths Available to Yeast Sugar Transporters.

Mol Biol Evol

November 2024

Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA.

Article Synopsis
  • Functional innovation at the protein level plays a significant role in evolution, with specific constraints depending on each protein's unique history and structure.
  • The study focuses on a recent functional innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, revealing that novel substrate transport requires complex interactions among various protein regions.
  • By analyzing genome data from 332 Saccharomycotina yeast species, the research suggests that these α-glucoside transporters evolved from a multifunctional ancestor and underwent subfunctionalization, making the acquisition of new functions challenging but possible through specific genetic changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!