Using the cross-sectional images taken with the zoom-in micro-tomography technique, we measured trabecular thicknesses of femur bones in postmortem rats. Since the zoom-in micro-tomography technique is capable of high resolution imaging of a small local region inside a large subject, we were able to measure the trabecular thickness without extracting bone samples from the rats. For the zoom-in micro-tomography, we used a micro-tomography system consisting of a micro-focus x-ray source, a 1248 x 1248 flat-panel x-ray detector and a precision scan mechanism. To compensate for the limited spatial resolution in the zoom-in micro-tomography images, we used the fuzzy distance transform for the calculation of the trabecular thickness. To validate the trabecular thickness measurement with the zoom-in micro-tomography images, we compared the measurement results with those obtained from the conventional micro-tomography images of the extracted bone samples. The difference between the two types of measurement results was less than 2.5%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0967-3334/26/5/008 | DOI Listing |
Physiol Meas
October 2005
Deptartment of Biomedical Engineering, Kyung Hee Univeristy, Kiheung, Yongin, Kyungki, Korea.
Using the cross-sectional images taken with the zoom-in micro-tomography technique, we measured trabecular thicknesses of femur bones in postmortem rats. Since the zoom-in micro-tomography technique is capable of high resolution imaging of a small local region inside a large subject, we were able to measure the trabecular thickness without extracting bone samples from the rats. For the zoom-in micro-tomography, we used a micro-tomography system consisting of a micro-focus x-ray source, a 1248 x 1248 flat-panel x-ray detector and a precision scan mechanism.
View Article and Find Full Text PDFPhys Med Biol
September 2004
Department of Biomedical Engineering, Kyung Hee University, Korea.
Since a micro-tomography system capable of microm-resolution imaging cannot be used for whole-body imaging of a small laboratory animal without sacrificing its spatial resolution, it is desirable for a micro-tomography system to have local imaging capability. In this paper, we introduce an x-ray micro-tomography system capable of high-resolution imaging of a local region inside a small animal. By combining two kinds of projection data, one from a full field-of-view (FOV) scan of the whole body and the other from a limited FOV scan of the region of interest (ROI), we have obtained zoomed-in images of the ROI without any contrast anomalies commonly appearing in conventional local tomography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!