The axial body pattern of Arabidopsis is determined during embryogenesis by auxin signaling and differential gene expression. Here we demonstrate that another pathway, cell-to-cell communication through plasmodesmata (PD), is regulated during apical-basal pattern formation. The SHOOT MERISTEMLESS (STM) promoter was used to drive expression in the shoot apical meristem (SAM) and a subset of cells at the base of the hypocotyl of 1x,2x, and 3x soluble green fluorescent proteins (sGFPs), and the P30 movement protein of Tobacco mosaic virus (TMV) translationally fused to 1x and 2x sGFP. In the early heart stage, 2x sGFP (54 kDa) moves throughout the whole embryo, whereas 3x sGFP (81 kDa) shows more restricted movement. As the embryo develops, PD apertures are down regulated to form local subdomains allowing transport of different sized tracers. For example, movement of 2x sGFP to the cotyledon, and 3x sGFP to root tips, becomes restricted. Subdomains of cell-to-cell transport align with the apical-basal embryo body axis and correspond to the shoot apex, cotyledons, hypocotyl, and root. Studies with P30-GFP fusions reinforce the distinction between embryonic symplastic subdomains. Although P30 targets embryo cell walls as puncta (diagnostic for functional localization of P30 to PD in adult plants), P30 cannot dilate embryonic PD to overcome the barriers for transport between symplastic subdomains, suggesting that specific boundaries separate symplastic subdomains of the embryo. Thus, cell-to-cell communication via plasmodesmata conveys positional information critical to establish the axial body pattern during embryogenesis in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188016 | PMC |
http://dx.doi.org/10.1073/pnas.0505622102 | DOI Listing |
J Exp Bot
December 2013
Institute of Developmental Genetics, Heinrich Heine University, D-40225 Düsseldorf, Germany.
Due to their rigid cell walls, plant cells can only communicate with each other either by symplastic transport of diverse non-cell autonomous signalling molecules via plasmodesmata (PDs) or by endo- and exocytosis of signalling molecules via the extracellular apoplastic space. PDs are plasma membrane-lined channels spanning the cell wall between neighbouring cells, allowing the exchange of molecules by symplastic movement through them. This review focuses on developmental decisions that are coordinated by short- and long-distance communication of cells via PDs.
View Article and Find Full Text PDFPlant Cell
October 2007
Pioneer Hi-Bred International, A DuPont Business, Johnston, Iowa 50131, USA.
DEFECTIVE KERNEL1 (DEK1), which consists of a membrane-spanning region (DEK1-MEM) and a calpain-like Cys proteinase region (DEK1-CALP), is essential for aleurone cell formation at the surface of maize (Zea mays) endosperm. Immunolocalization and FM4-64 dye incubation experiments showed that DEK1 and CRINKLY4 (CR4), a receptor kinase implicated in aleurone cell fate specification, colocalized to plasma membrane and endosomes. SUPERNUMERARY ALEURONE LAYER1 (SAL1), a negative regulator of aleurone cell fate encoding a class E vacuolar sorting protein, colocalized with DEK1 and CR4 in endosomes.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2005
Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, California 94720, USA.
In Arabidopsis embryogenesis, positional information establishes the overall body plan and lineage-dependent cell fate specifies local patterning. Position-dependent gene expression and responses to the plant hormone auxin are also crucial. Recently, another mechanism that delivers positional information has been uncovered.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2005
Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720.
The axial body pattern of Arabidopsis is determined during embryogenesis by auxin signaling and differential gene expression. Here we demonstrate that another pathway, cell-to-cell communication through plasmodesmata (PD), is regulated during apical-basal pattern formation. The SHOOT MERISTEMLESS (STM) promoter was used to drive expression in the shoot apical meristem (SAM) and a subset of cells at the base of the hypocotyl of 1x,2x, and 3x soluble green fluorescent proteins (sGFPs), and the P30 movement protein of Tobacco mosaic virus (TMV) translationally fused to 1x and 2x sGFP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!