In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies.

Food Chem Toxicol

Bioactive Polymer Engineering Section, Chemical Science Division, Regional Research Laboratory, Pappanamcode, Trivandrum 695 019, Kerala, India.

Published: February 2006

The free radical scavenging capacity and antioxidant activities of the methanolic extract of Cinnamomum verum leaf (CLE) were studied and compared to antioxidant compounds like trolox, butylated hydroxyl anisole, gallic acid and ascorbic acid. The CLE exhibited free radical scavenging activity, especially against DPPH radical and ABTS radical cation. They also exhibited reducing power and metal ion chelating activity, along with hydroxyl radical scavenging activity. The peroxidation inhibiting activity of CLE recorded using the linoleic acid emulsion system, showed very good antioxidant activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2005.06.013DOI Listing

Publication Analysis

Top Keywords

radical scavenging
12
antioxidant activity
8
cinnamomum verum
8
verum leaf
8
free radical
8
scavenging activity
8
activity
6
radical
5
vitro antioxidant
4
scavenging
4

Similar Publications

Targeting mitochondrial function as a potential therapeutic approach for allergic asthma.

Inflamm Res

January 2025

Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, College of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.

Allergic asthma is a chronic complex airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, excessive mucus secretion, and airway remodeling, with increasing mortality and incidence globally. The pathogenesis of allergic asthma is influenced by various factors including genetics, environment, and immune responses, making it complex and diverse. Recent studies have found that various cellular functions of mitochondria such as calcium regulation, adenosine triphosphate production, changes in redox potential, and free radical scavenging, are involved in regulating the pathogenesis of asthma.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.

View Article and Find Full Text PDF

Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesized a novel I-Bi/BiWO/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage.

View Article and Find Full Text PDF

Ferroptosis and PANoptosis Under Hypoxia Pivoting on the Crosstalk between DHODH and GPX4 in Corneal Epithelium.

Free Radic Biol Med

January 2025

Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:

Cell death under stress conditions like hypoxia, involves multiple interconnected pathways. In this study, a stable dihydroorotate dehydrogenase (DHODH) knockdown human corneal epithelial cell line was established to explore the regulation of hypoxic cell death, which was mitigated by various cell death inhibitors, particularly by a lipid peroxyl radical scavenger liproxstatin-1 (Lip-1), suggesting that hypoxic cell death involves crosstalk of ferroptosis and PANoptosis. We discovered that both DHODH and Glutathione peroxidase 4 (GPX4) protected cells from hypoxic death by inhibiting lipid peroxidation, mitochondrial reactive oxygen species (ROS) and maintaining mitochondrial membrane potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!