Lysyl oxidase (LOX), an extracellular enzyme, plays a key role in the post-translational modification of collagens and elastin, catalyzing inter- and intra-crosslinking reactions. Because the crosslinked extracellular matrices (ECMs) are highly resistant to degradative enzymes, it is considered that the over-expression of LOX may cause severe fibrotic degeneration. In the present study, we addressed the role of LOX-mediated crosslinking in chronic renal tubulointerstitial fibrosis using an animal model of hereditary nephrotic syndrome, the Institute of Cancer Research (ICR)-derived glomerulonephritis (ICGN) mouse. Ribonuclease protection assay (RPA) revealed that LOX mRNA expression was up-regulated in the kidneys of ICGN mice as compared with control ICR mice. High-level expression of LOX and transforming growth factor (TGF)-beta1 (an up-regulator of LOX) mRNA was detected in tubular epithelial cells of ICGN mouse kidneys by in situ hybridization. Type-I and -III collagens, major substrates for LOX, were accumulated in tubulointerstitium of ICGN mouse kidneys. The present findings imply that TGF-beta1 up-regulates the production of LOX in tubular epithelial cells of ICGN mouse kidneys, and the excessive LOX acts on interstitial collagens and catalyzes crosslinking reactions. As a result, the highly crosslinked collagens induce an irreversible progression of chronic renal tubulointerstitial fibrosis in the kidneys of ICGN mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-005-0001-8DOI Listing

Publication Analysis

Top Keywords

icgn mouse
16
chronic renal
12
mouse kidneys
12
transforming growth
8
lysyl oxidase
8
hereditary nephrotic
8
lox
8
renal tubulointerstitial
8
tubulointerstitial fibrosis
8
lox mrna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!