Short-term visual deprivation alters neural processing of tactile form.

Exp Brain Res

Department of Neurology, Emory University School of Medicine, WMRB 6000, 1639 Pierce Drive, Atlanta, GA 30322, USA.

Published: October 2005

Blindness is known to alter the responsiveness of visual cortex. Recently, reversible visual deprivation by blindfolding has been shown to affect non-visual abilities as well as visual cortical function. Here we investigated the effect of 2 h of blindfolding on cerebral cortical activation patterns during tactile form perception, using functional magnetic resonance imaging. Two form tasks were used, one requiring discrimination of global stimulus form and the other, detection of a gap in a bar. Blindfolded subjects showed significant deactivation during these tasks in regions that are intermediate in the hierarchy of visual shape processing: probable V3A and ventral intraparietal sulcus (vIPS). These regions lacked signal changes in controls. There were also task-specific increases in activation in blindfolded relative to control subjects, favoring the form over the gap task, along the IPS and in regions of frontal and temporal cortex. We also found alterations of functional connectivity that corresponded to the activity differences, with the emergence of correlated activity between the vIPS and V3A in blindfolded subjects. We conclude that blindfolding sighted individuals for a 2-h period induces significant changes in the neural processing of tactile form, probably reflecting short-term neural plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-005-2397-4DOI Listing

Publication Analysis

Top Keywords

tactile form
12
visual deprivation
8
neural processing
8
processing tactile
8
blindfolded subjects
8
form
6
short-term visual
4
deprivation alters
4
alters neural
4
form blindness
4

Similar Publications

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Vibro-tactile stimulation of the neck induces head righting in people with cervical dystonia.

Parkinsonism Relat Disord

January 2025

Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, USA; Center for Clinical Movement Science, University of Minnesota, USA.

Introduction: Cervical dystonia (CD) is characterized by involuntary neck muscle spasms that lead to abnormal head movements or postures. It is associated with somatosensory (tactile and proprioceptive) dysfunction. Here we tested whether vibro-tactile stimulation (VTS) of the cervical muscles constitutes a non-invasive form of neuromodulation of the somatosensory system that can provide temporary symptom relief for people with CD.

View Article and Find Full Text PDF

Learning tactile Braille reading leverages cross-modal plasticity, emphasizing the brain's ability to reallocate functions across sensory domains. This neuroplasticity engages motor and somatosensory areas and reaches language and cognitive centers like the visual word form area (VWFA), even in sighted subjects following training. No study has employed a complex reading task to monitor neural activity during the first weeks of Braille training.

View Article and Find Full Text PDF

The recent identification of Piezo ion channels demonstrating a mechano-sensitive impact on neurons revealed distinct Piezo-1 and 2 types. While Piezo-1 predominates in neurons linked to non-sensory stimulation, such as pressure in blood vessels, Piezo-2 predominates in neurons linked to sensory stimulation, such as touch. Piezo-1 and 2 have a major bidirectional impact on transient receptor potential (TRP) ion channels, and TRPs also impact neurotransmitter release.

View Article and Find Full Text PDF

Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!