Construction, expression, and characterization of a thermostable xylanase.

Curr Microbiol

Department of Biological Science, College of Life Science, Zhejiang University, Hangzhou, 310029, PR China.

Published: September 2005

A hybrid gene, btx, encoding a thermostable xylanase, Btx, was constructed by substituting the 31 N-terminal amino acid residues of the Thermomonospora fusca xylanase A (TfxA) for the corresponding region of 22 amino acid residues of the Bacillus subtilis xylanase A (BsxA). The btx gene was expressed in Escherichia coli BL21. The halo size produced by xylanase Btx on a Remanzol brilliant blue R (RBB) xylan plate at 60 degrees C and pH 6.0 was larger than those of BsxA and TfxA. The molecular weight of Btx was 22 kDa. Temperature and pH optima for Btx were at 50-60 degrees C and 6.0, respectively. Btx showed activity over 80% over a pH range of 5.0-9.0, which was wider than that of BsxA, and was also more acid-resistant than TfxA. Btx exhibited significant thermostability compared with BsxA. The results show the importance of the N-terminal sequence of TfxA in thermostability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-005-4543-4DOI Listing

Publication Analysis

Top Keywords

thermostable xylanase
8
btx
8
xylanase btx
8
amino acid
8
acid residues
8
xylanase
5
construction expression
4
expression characterization
4
characterization thermostable
4
xylanase hybrid
4

Similar Publications

The thermostability and catalytic activity of GH11 xylanase XynASP from JOP 1030-1 were improved by systematically engineering the cord region. Ultimately, mutant DSM4 was developed through iterative combinations of mutations. Compared to the wild-type XynASP, DSM4 showed a 130.

View Article and Find Full Text PDF

Xylooligosaccharides (XOS) are excellent prebiotic which improve health through selective modulation of beneficial gut microbiome. Its production from agroresidues using microbial xylanase is considered as sustainable and economic approach. In this study a xylanase producing bacterium isolated from decaying wood soil was phylogenetically identified and designated as Bacillus stercoris DWS1.

View Article and Find Full Text PDF

Hyperthermophilic xylanase and thermophilicity analysis by molecular dynamic simulation with quantum mechanics.

Appl Microbiol Biotechnol

December 2024

Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, 12120, Patumthani, Thailand.

Thermophilic xylanases catalyzing the cleavage of β-1,4-glycosidic bonds in xylan have applications in food, feed, biorefinery, and pulp industries. In this study, a hyperthermophilic endo-xylanase was obtained by further enhancement of thermal tolerance of a thermophilic GH11 xylanase originated from metagenome of bagasse pile based on rational design. Introducing N13F and Q34L to the previously reported X11P enzyme shifted the optimal working temperature to 85 °C and led to 20.

View Article and Find Full Text PDF

GH10 xylanases and GH62 Arabinofuranosidases play key roles in the breakdown of arabinoxylans and are important tools in various industrial and biotechnological processes, such as renewable biofuel production, the paper industry, and the production of short-chain xylooligosaccharides (XOS) from plant biomass. However, the use of these enzymes in industrial settings is often limited due to their relatively low thermostability and reduced catalytic efficiency. To overcome these limitations, strategies based on enzymatic chimera construction and the use of metal ions and other cofactors have been proposed to produce new recombinant enzymes with improved catalytic activity and thermostability.

View Article and Find Full Text PDF

Ancestral sequence reconstruction of a robust β-1,4-xylanase and efficient expression in Bacillus subtilis.

Int J Biol Macromol

December 2024

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China. Electronic address:

Xylanases are a class of glycoside hydrolases commonly used in the food, papermaking, and textile industries. However, most xylanases are rapidly inactivated under harsh industrial conditions. Here, a unique and robust GH11 xylanase, AncXyn18, was designed using an ancestral sequence reconstruction strategy, sequence analysis, structure prediction, and experimental verification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!