A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In situ measurement of neuronal nitric oxide synthase activity in the spinal cord by NADPH-diaphorase histochemistry. | LitMetric

NADPH-diaphorase (NADPH-d) histochemistry has provided a simple method to stain neuronal nitric oxide synthase (nNOS)-containing neurons in the central nervous system. In the spinal cord, NO formation following activation of N-methyl-D-asparate (NMDA) receptors plays a crucial role in nociceptive processing. To investigate the molecular mechanisms, we attempted to evaluate nNOS activity in situ using isolated intact spinal cord preparation and NADPH-d histochemistry. NADPH-d activity in the superficial layer of the spinal cord increased gradually with ages from P10 to P30 and NMDA enhanced the NADPH-d staining in a time- and concentration-dependent manner. The NMDA-stimulated NADPH-d staining was inhibited by NMDA receptor antagonists, but not by non-NMDA and metabotropic glutamate receptor antagonists. The NADPH-d staining showed a pronounced stereospecificity for beta-NADPH and completely suppressed by dichlorophenolindophenol, an artificial electron acceptor. NMDA-evoked NO formation in the spinal cord was confirmed by the fluorescent NO indicator diaminofluorescein-FM (DAF-FM). These results demonstrate that NADPH-d activity in the superficial spinal cord is ascribed to nNOS activity and is dependent on NMDA. A combination of isolated intact spinal cord preparations and NADPH-d histochemistry may provide a unique system to elucidate biochemical and molecular mechanisms for nNOS activation in the spinal cord.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2005.06.017DOI Listing

Publication Analysis

Top Keywords

spinal cord
32
nadph-d histochemistry
12
nadph-d staining
12
neuronal nitric
8
nitric oxide
8
oxide synthase
8
spinal
8
cord
8
nadph-d
8
molecular mechanisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!