Structural properties of ternary systems composed of nonionic surfactant dodecyl-poly(ethylene oxide-23) ether (C12E23, commercial name: Brij 35), water and various alcohols from ethanol to 1-decanol have been investigated using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) techniques. All measurements were performed at the temperature 25 degrees C. SAXS experimental data were put on absolute scale using water as a secondary standard. The data of water-rich mixtures at low to moderate surfactant concentrations were evaluated using the generalized indirect Fourier transformation method (GIFT), which is based on the simultaneous determination of the intra- and inter-particle scattering contributions. In this way, the size and the shape of interacting scattering particles in real space could be deduced. The systems with a relatively low surfactant concentration (5 mass%) were studied most extensively. In these cases, the water-rich regions of the phase diagrams could be investigated into more detail, since in the alcohol-rich regions problems with the GIFT evaluation of the SAXS data were encountered. The presented results demonstrate the level of structural details that can be obtained on the basis of scattering methods and point out the specific stages of data evaluation and interpretation where one must be extremely precautious. As such they reveal the inner structuration of the complex ternary systems of our present interest. In parallel, they also indicate that the longer chain alcohols actually behave as real oil phases in the studied systems, as one might expect, and also confirm the well-known properties of different short to medium chain alcohols that act as co-solvents and/or co-surfactants in microemulsion systems depending on their chain length.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.06.088DOI Listing

Publication Analysis

Top Keywords

ternary systems
12
nonionic surfactant
8
brij water
8
small-angle x-ray
8
x-ray scattering
8
dynamic light
8
light scattering
8
chain alcohols
8
scattering
7
systems
5

Similar Publications

This study investigates solute-solvent interactions in ternary systems consisting of lithium trifluoromethanesulfonate (LiOTf) as the solute and tetraethylene glycol dimethyl ether (TEGDME) and 1,2-dimethoxyethane (DME) as solvents over a range of temperatures (293.15-313.15 K).

View Article and Find Full Text PDF

Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.

Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.

View Article and Find Full Text PDF

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.

View Article and Find Full Text PDF

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!