Oligosaccharide release and MALDI-TOF MS analysis of N-linked carbohydrate structures from glycoproteins.

Methods Mol Biol

Department of Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA.

Published: September 2005

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-922-2:381DOI Listing

Publication Analysis

Top Keywords

oligosaccharide release
4
release maldi-tof
4
maldi-tof analysis
4
analysis n-linked
4
n-linked carbohydrate
4
carbohydrate structures
4
structures glycoproteins
4
oligosaccharide
1
maldi-tof
1
analysis
1

Similar Publications

In this work, we present the synthesis and application of fluorescent rhodamine B hydrazide for the derivatization of simple oligosaccharides and complex glycans using a hydrazone formation chemistry approach. The labeling conditions and the experimental setup of CE/LIF were optimized by analyzing oligosaccharide standards. The CE/LIF separations were performed in polybrene-coated capillaries eliminating the need for the purification step after derivatization.

View Article and Find Full Text PDF

An Oral HS Responsive CuO Nanozyme Platform with Strong ROS/HS Scavenging Capacity for the Treatment of Colitis.

ACS Appl Mater Interfaces

December 2024

Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.

View Article and Find Full Text PDF

Glycosylation of oyster peptides by COS ameliorates zinc deficiency-induced syndromes: intestinal inflammation and imbalance of the gut microbiota .

Food Funct

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Zinc is essential for maintaining the integrity and repair of small intestinal epithelial cells while zinc deficiency could induce the inflammatory infiltration and imbalance of intestinal flora in the intestine. In this study, glycosylation between oyster protein hydrolysate (OPH) and chitosan oligosaccharide (COS) was conducted and used as the carrier of zinc ions (OCZn). The results of zeta potential and particle size distribution showed that the OPH-COS successfully bound to zinc ions to form OCZn with a surface zinc content of 0.

View Article and Find Full Text PDF

Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain.

View Article and Find Full Text PDF

The efficacy of photodynamic therapy (PDT) based on traditional photosensitizers is generally limited by the cellular redox homeostasis system due to the reactive oxygen species (ROS) scavenging effect of glutathione (GSH). In this study, buthionine sulfoximine (BSO), a GSH inhibitor, was conjugated with the amine group of chitosan oligosaccharide (COS) using a thioketal linker (COSthBSO) to liberate BSO and chlorine e6 (Ce6) under oxidative stress, and then, Ce6-COSthBSO NP (Ce6-COSthBSO NP), fabricated by a dialysis procedure, showed an accelerated release rate of BSO and Ce6 by the addition of hydrogen peroxide, indicating that nanophotosensitizers have ROS sensitivity. In the in vitro cell culture study using HCT116 colon carcinoma cells, a combination of BSO and Ce6 efficiently suppressed the intracellular GSH and increased ROS production compared to the sole treatment of Ce6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!