Apoptosis of murine and human macrophages induced by group B Streptococcus agalactiae (GBS) is likely an important virulence mechanism that is used by the bacteria to suppress the host immune response and to persist at sites of infection. The mechanisms by which GBS induces apoptosis are, however, largely unknown. In this study, we report that in murine macrophages GBS induces unique changes in the regulation and localization of the apoptotic regulators Bad, 14-3-3, and Omi/high-temperature requirement A2 and leads to the release of cytochrome c and the activation of caspase-9 and caspase-3. Furthermore, inhibition of caspase-3 impaired GBS-induced apoptosis of macrophages. The ability to modulate the activity of effector caspases may therefore represent an unexploited avenue for therapeutic intervention in GBS infections.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.175.4.2555DOI Listing

Publication Analysis

Top Keywords

apoptosis murine
8
murine macrophages
8
gbs induces
8
mechanisms group
4
group streptococcal-induced
4
apoptosis
4
streptococcal-induced apoptosis
4
macrophages
4
macrophages apoptosis
4
murine human
4

Similar Publications

Background: Recent studies have implicated a role for perioperative medications in determining patient outcomes after surgery for malignant tumours, including relapse and metastasis.

Methods: A combined approach spanned molecular, cellular, and organismal levels, including bioinformatics, immunohistochemical staining of clinical and animal samples, RNA sequencing of glioblastoma multiforme (GBM) cells with Ingenuity Pathway Analysis, lentiviral-mediated gene expression modulation, in vitro cell experiments, and in vivo orthotopic tumour transplantation.

Results: We observed a significant correlation between increased kappa opioid receptor (KOP receptor) expression and better prognosis in patients with glioma.

View Article and Find Full Text PDF

Background/aim: Salmonella typhimurium A1-R (A1-R) targets and inhibits a wide range of cancer types without continuously infecting healthy tissue. Chloroquine, an antimalarial drug, induces apoptosis and inhibits autophagy in cancer cells. The aim of the present study was to determine the synergy of A1-R plus chloroquine on HT1080 human fibrosarcoma cells in vitro and in a nude-mouse model.

View Article and Find Full Text PDF

Background/aim: Kisspeptin has multifaceted roles in both normal and pathological conditions. Although lung cancer is a leading cause of cancer worldwide, the role of kisspeptin in lung cancer remains poorly understood. Thus, this study aimed to investigate the effects of kisspeptin on lung cancer.

View Article and Find Full Text PDF

Adipocyte-derived small extracellular vesicles exacerbate diabetic ischemic heart injury by promoting oxidative stress and mitochondrial-mediated cardiomyocyte apoptosis.

Redox Biol

December 2024

Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA. Electronic address:

Background: Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R.

View Article and Find Full Text PDF

Ginsenosides possess potential protective effects against cisplatin (CDDP)-induced toxicity, but the limited bioavailability of ginsenosides hampered their therapeutic application. Ginseng exosomes (G-Exo), which are active ingredients in ginseng, exhibit excellent biocompatibility and low immunogenicity. Here, G-Exo were isolated from ginseng roots through a combination of ultracentrifugation and sucrose gradient centrifugation techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!