Monoclonal antibodies (MoAbs) recognizing lineage- and stage-specific human cell-surface antigens are valuable reagents for the characterization and isolation of various specialized cell populations derived from human embryonic stem cells (hESCs). In this report, we examined the use of in vitro differentiated transchromosomic mouse embryonic stem cells (TC-ESCs) as immunogens to obtain MoAbs against human cell-surface antigens. Immunization of a neural-cell population derived from differentiating human chromosome 4 and 11 TC-ESCs resulted in two chromosome-specific MoAbs, h4-neural1 and h11-neural1, respectively. The staining profiles of differentiated TC-ESCs and human embryonic carcinoma cells with these MoAbs were similar to the expression profile of nestin, a well-characterized intracellular marker for neural progenitor cells. We also described the successful purification and identification of the gene for h4-neural1 antigen (CD133, 4p15.32) with immunoaffinity chromatography. This procedure may have significant utility in generating MoAbs useful for understanding the mechanism that regulates the in vitro differentiation of hESCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.2004-0369 | DOI Listing |
Int J Mol Sci
January 2025
Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain.
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biology, University of Padua, 35131 Padua, Italy.
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes.
View Article and Find Full Text PDFBiomedicines
December 2024
School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia.
Background/objectives: (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!