Potassium channels and their associated subunits are important contributors to electrical excitability in many cell types. In this study, a yeast two-hybrid assay was used to identify inhibitors such as a diaryl-urea compound (CL-888) that binds to and modulates the formation of the Kv4/KChIP complex. CL-888 altered the apparent affinity of KChIP1 to Kv4.3-N in a Biacore assay, but did not dissociate the two proteins in size-exclusion chromatography experiments. Kv4.2/KChIP1 current amplitude and kinetics were altered with compound exposure, supporting the hypothesis of a compound-induced conformational change in the protein complex. Fluorescence spectroscopy of a unique tryptophan residue in KChIP1 was consistent with compound binding to the protein. Molecular modeling using the KChIP1 crystal structure indicates that compound binding may occur in a small tryptophan-containing binding pocket located on the hydrophilic side of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2005.06.042DOI Listing

Publication Analysis

Top Keywords

compound binding
8
identification characterization
4
characterization small
4
small molecule
4
molecule modulators
4
modulators kchip/kv4
4
kchip/kv4 function
4
function potassium
4
potassium channels
4
channels associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!