A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport coefficients and orientational distributions of rodlike particles with magnetic moment normal to the particle axis under circumstances of a simple shear flow. | LitMetric

Transport coefficients and orientational distributions of rodlike particles with magnetic moment normal to the particle axis under circumstances of a simple shear flow.

J Colloid Interface Sci

Department of Machine Intelligence and System Engineering, Faculty of System Science and Technology, Akita Prefectural University, Tsuchiya-aza, Honjo 015-0055, Japan.

Published: December 2005

We have investigated the influences of the magnetic field strength, shear rate, and random forces on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. This dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment normal to the particle axis. In the present analysis, these spheroidal particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved numerically. The results obtained here are summarized as follows. For a very strong magnetic field, the rodlike particle is significantly restricted in the field direction, so that the particle points to a direction normal to the flow direction (and also to the magnetic field direction). However, the present particle does not exhibit a strong directional characteristic, which is one of the typical properties for the previous particle with a magnetic moment parallel to the particle axis. That is, the particle can rotate around the axis of the magnetic moment, although the magnetic moment nearly points to the field direction. The viscosity significantly increases with the field strength, as in the previous particle model. The particle of a larger aspect ratio leads to the larger increase in the viscosity, since such elongated particles induce larger resistance in a flow field. The diffusion coefficient under circumstances of an applied magnetic field is in reasonable agreement between theoretical and experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.06.006DOI Listing

Publication Analysis

Top Keywords

magnetic moment
20
magnetic field
20
particle axis
12
field direction
12
magnetic
10
particle
10
field
9
transport coefficients
8
orientational distributions
8
distributions rodlike
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!