Evaluation of potential Stat3-regulated genes in human breast cancer.

Biochem Biophys Res Commun

Center for Childhood Cancer, Columbus Children's Research Institute, The Ohio State University, Columbus, OH 43205, USA.

Published: September 2005

The constitutive activation of signal transducer and activator of transcription 3 (Stat3) is frequently detected in breast cancer tissues and cell lines. Stat3 has been classified as a proto-oncogene, because an activated form of Stat3 can mediate oncogenic transformation in cultured cells and tumor formation in nude mice. Since Stat3 may play an important role in breast cancer, it is of interest to investigate the expression of phosphorylated Stat3, an activated form of Stat3, and its downstream mediators specifically in breast cancer, and to explore the possible mechanisms of Stat3 signaling pathway in oncogenesis of breast cancer. We analyzed Stat3 phosphorylation and expression of Stat3-regulated genes in breast cancer cell lines as well as invasive breast cancer tissues using tissue microarray slides. Our results showed that elevated levels of phosphorylation of Stat3 protein (Tyr705) were detected in 48 out of total 136 invasive breast tumors (35%) whereas normal breast tissues express much lower levels of Stat3 phosphorylation. The increased levels of Stat3 phosphorylation were associated with the metastasis in regional lymph nodes (P=0.042) and the expression of progesterone receptor (P=0.028) but not with distant metastasis, nor the expression of estrogen receptor. Our results also indicate that elevated levels of Stat3 phosphorylation were significantly associated with increased expression of potential downstream targets of Stat3 which include apoptosis inhibitors (Survivin, Mcl-1, HSP27, Adrenomedullin, and Bcl-xL), cell-cycle regulators (c-Fos, MEK5, and c-Myc), and inducer of tumor angiogenesis (VEGF, COX-2, MMP-2, MMP-10, and MMP-1) in invasive breast cancer tissues. Therefore, our findings suggest that constitutive Stat3 signaling may be one of the key upstream regulators to induce these downstream proteins, which may play important roles in Stat3-mediated oncogenesis in breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.07.075DOI Listing

Publication Analysis

Top Keywords

breast cancer
36
stat3 phosphorylation
16
stat3
14
cancer tissues
12
invasive breast
12
levels stat3
12
breast
11
cancer
9
stat3-regulated genes
8
cell lines
8

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.

Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!