Microwave (MW) and high-intensity ultrasound (US) have emerged as powerful techniques for the elimination of persistent organic pollutants (POPs) that constitute a major health hazard, whether by direct exposure or through accumulation in biota. In order to achieve decontamination, POPs should be completely mineralized to CO2, H2O and smaller amounts of inorganic ions, or at least converted to less harmful chemical species. Under US or MW irradiation rapid degradation of aromatic halides, halogenated phenols and polychlorinated biphenyls in polluted waters was achieved at neutral pH in the presence of a moderate excess (5-30 eq) of Fenton's reagent. Acidification with acetic acid (pH 2.0-2.3) did not affect the process, but sulphuric acid (pH 1.7-2.0) facilitated complete degradation. Thus, compared to conventional methods, US and MW processes are faster and much more efficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593332608618513 | DOI Listing |
Anal Methods
January 2025
Air Resource, Environmental Resource Planning and Management, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.
In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, British Columbia V7V 1N6, Canada.
The St. Lawrence Estuary (SLE) beluga () population in Canada is Endangered, and endocrine disrupting contaminants, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other halogenated flame retardants, have been identified as a threat to the recovery of this population. Here, potential impacts of these contaminants on SLE beluga were evaluated by comparing skin transcriptome profiles and biological pathways between this population and a population less exposed to contaminants (Eastern Beaufort Sea) used as a reference.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.
Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
GhEnToxLab, Department of Animal Science and Aquatic Ecology, Ghent University, Ghent, Belgium.
This study investigates the ecological risks posed by organic micropollutants (OMPs) in wastewater treatment plant (WWTP) effluents in Flanders, Belgium based on single-compound risk characterization. Utilizing a five-year monitoring dataset from the Flemish Environment Agency (VMM) and employing seven ecological threshold values (ETV) types, this research characterizes the risk of 207 OMPs, including pharmaceuticals, pesticides, industrial chemicals, and other pollutants. Several OMPs persist in effluents at concentrations that pose significant ecological risks after secondary and tertiary treatment processes in the region of Flanders (Belgium).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!