Coupling between conformation and proton binding in proteins.

Proteins

Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.

Published: October 2005

Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2(zeta) possible ionization states of the whole molecule, with zeta being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.20531DOI Listing

Publication Analysis

Top Keywords

charge distribution
20
fixed charge
8
poisson equation
8
discriminate native
8
native non-native
8
non-native conformations
8
free energy
8
ionization states
8
states molecule
8
distribution native
8

Similar Publications

The paper addresses the economic operation optimization problem of photovoltaic charging-swapping-storage integrated stations (PCSSIS) in high-penetration distribution networks. It proposes a dual-layer optimization scheduling model for PCSSIS clusters and distribution network systems. Firstly, a master-slave game model is constructed.

View Article and Find Full Text PDF

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 seconds after initial model assembly using a regular workstation.

View Article and Find Full Text PDF

The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.

View Article and Find Full Text PDF

Measurement of CP Violation Observables in D^{+}→K^{-}K^{+}π^{+} Decays.

Phys Rev Lett

December 2024

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Article Synopsis
  • The study investigates CP symmetry violation in the decay of D^{+} particles into K^{-}K^{+}π^{+} using data from proton-proton collisions at a high energy of 13 TeV.
  • A unique model-independent method was employed to analyze the phase-space distributions of D^{+} and D^{-} particles, correcting for any instrumental biases using D_{s}^{+} decays.
  • The findings indicate no significant evidence of CP violation, with a p value of 8.1%, and measure specific CP asymmetry observables, marking this study as the most sensitive search of its kind in multibody decays.
View Article and Find Full Text PDF
Article Synopsis
  • Electric quadrupole traps effectively levitate charged objects, from protons to small particles, influencing their rotational behavior when charge distribution varies.
  • Experiments reveal a shift in motion for microparticles, transitioning from librational to synchronized rotation with the trap drive due to torque effects from the electric quadrupole.
  • This technique showcases versatility by spinning various particles like silicon microrods and microdiamonds, with the latter enabling detailed motion analysis through embedded nitrogen vacancy centers, promising advances in levitated quantum nanomechanics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!